820 resultados para Games of strategy (Mathematics)
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.
Resumo:
We consider the equation u(t) + u(n)u(x) + H(x, t, u) = 0 and derive a transformation relating it to u(t) + u(n)u(x) = 0. Special cases of the equation appearing in applications are discussed. Initial value problems and asymptotic behaviour of the solution are studied.
Resumo:
A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.
Resumo:
The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature distributions predicted using a linear variation in the dielectric properties are compared with those obtained using the exact nonlinear variation.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
The pursuit-evasion problem of two aircraft in a horizontal plane is modelled as a zerosum differential game with capture time as payoff. The aircraft are modelled as point masses with thrust and bank angle controls. The games of kind and degree for this differential game are solved.
Resumo:
In this paper, we investigate a numerical method for the solution of an inverse problem of recovering lacking data on some part of the boundary of a domain from the Cauchy data on other part for a variable coefficient elliptic Cauchy problem. In the process, the Cauchy problem is transformed into the problem of solving a compact linear operator equation. As a remedy to the ill-posedness of the problem, we use a projection method which allows regularization solely by discretization. The discretization level plays the role of regularization parameter in the case of projection method. The balancing principle is used for the choice of an appropriate discretization level. Several numerical examples show that the method produces a stable good approximate solution.
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.
Resumo:
Let Z(n) denote the ring of integers modulo n. A permutation of Z(n) is a sequence of n distinct elements of Z(n). Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of Z(n), namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s (n) and t (n) respectively. The case when n is even is trivial in both the cases, with s (n) = 1 and t (n) = n!. For n odd, we prove (n phi(n))/2(k) <= s(n) <= n!.2(-)(n-1)/2/((n-1)/2)! and 2 (n-1)/2 . (n-1/2)! <= t (n) <= 2(k) . (n-1)!/phi(n), where k is the number of distinct prime divisors of n and phi is the Euler's totient function.