850 resultados para Gall wasps
Resumo:
An understanding of the complex ecological interaction between fig wasps and their host plants in Amazonia requires previous knowledge of their distribution and diversity. The objective of this study was to describe the composition and structure of the wasp community associated with four species of Ficus in the municipal area of Manaus, Amazonas, Brazil. A total of 600 syconia from four species were collected. The study species were: Ficus obtusifolia Kunth; Ficus citrifolia Mill; F. americana subspecies guianensis Desv. form mathewsii; and F. americana subspecies guianensis Desv. form parkeriana. Statistical analyses were used to examine the relationship between fig wasp diversity and syconium diameter, and the effect of non-pollinating wasps on numbers of pollinators and seeds. Forty three species of fig wasp were identified, distributed across seven genera (Pegoscapus, Idarnes, Aepocerus, Physothorax, Anidarnes, Heterandrium , Eurytoma). Idarnes (carme group) was the wasps genus non-pollinator with greatest number of individuals with the greatest number of infested syconia (7409 wasps in 376 syconia). Analysing non-pollinating wasp diversity in relation to fig diameter, a significant difference was observed between the four fig species. Ficus citrifolia and F. americana subspecies guianensis form mathewsii had the smallest diameter but the greatest diversity of fig wasp. Ficus obtusifolia was the only species in which the non-pollinating wasps had a significant negative effect on the number of Pegoscapus sp. and on seed production.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
n.s. no.59(1990)
Resumo:
Schizomyia maricaensis sp. nov. is described and illustrated based on the pupa, male, female, and gall. This species induces rosette galls on Tetrapterys phlomoides (Malpighiaceae).
Resumo:
A new species of gall midge, Lopesia eichhorniae sp. nov. (Cecidomyiidae, Diptera), associated with rhizomes of Eichhornia azurea (Sw.) Kunth (Pontederiaceae) is described. This is the first record of Lopesia galls in this species of macrophyte, quite common in natural and artificial lakes in Southeast Brazil. Illustrations of the adults (male and female), pupa, larva, and gall of the new species are presented.
Resumo:
Among the material of the archives of the Pathological Section of the Oswaldo Cruz Institue (Rio de Janeiro, Brasil) we found 9 cases of cancer metastasis in the spleen. Four of them were macroscopically apparent, but five had only been diagnosed microscopically. Of these cases of tumors, 3 are adenocarcinoma originated from the pancreas (cases 1, 3, 5,); 3 are primary carcinoma of stomach (cases 7,8 and 9); 1 adenocarcinoma of gall-bladder (case 2); 1 originated form the mammary gland (case 4) and finally 1 form the colon. (case 6.). The incidence of the metastasis observed in the spleen among the total of 6.400 studied autopsies is of 0,14%; The same incidence among those of epithelial blastomata is of 1,8%.
Resumo:
[Table des matières] Introduction. 2 Stratégies de prévention dans d'autres régions. 3. Australie (Australian Better Health Initiative 2006-2010). 4. Royaume-Uni. 5. Suisse. 5.1 En résumé ... 5.2 Vers une loi fédérale (?) 5.3 Suisse : synopsis. 6. Saint-Gall. 6.1 Poids corporel sain pour les enfants. 6.2 Santé au travail. 6.3 Dépendances. 6.4 Prévention et promotion de la santé dans les communes. 6.5 Saint-Gall : synopsis. 7. Valais. 8. Tessin. 8.1 Canton du Tessin : Synopsis I (programme général). 8.2 Canton du Tessin : Synopsis II (activités en cours). Annexe 1 : 21 buts de santé pour la Suisse (Santé Publique Suisse). Annexe 2 : 7 thèses sur la nouvelle réglementation de la prévention et de la promotion de la santé en Suisse (Office fédéral de la santé publique).
Resumo:
Alguns van considerar el 2000 l'any del llibre electrònic però el fracàs de les empresespunt.com no el va fer possible . En canvi, va ser a principis de 2004 quan hi va haver el major número de compres de llibres-e amb més de 3 milions de dòlars en vendes. Una enquesta de consum del 2002 va trobar que el 67% dels enquestats volien llegir llibres-e i que el 62% volien tenir accés a llibres-e a la biblioteca. Malauradament, la gran quantitat d'informació escrita sobre els llibres-e ha començat a generar una sèrie de mites sobre el seu ús, funcionalitat i cost. L'autor considera que aquests mites poden interferir en el paper de les biblioteques per ajudar a determinar el futur del suport i del seu accés. És important que els bibliotecaris, en comptes de fixar-se en els pros i contres de la tecnologia dels llibres-e, es comprometin i ajudin a aclarir el paper dels documents digitals en la biblioteca moderna.
Resumo:
Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.
Resumo:
Report for the scientific sojourn at the University of Lund, Sweden, between May and September 2007. A landscape-scale research approach has been highlighted by a growing body of literature as essential for understanding important ecosystem services as biological control. Aphids are victims of a diversity of enemies making the aphid-enemy interaction a nice example for the role of enemy diversity for the functioning of biological control. Here it is examined the effects of landscape complexity on cereal aphids and associated natural enemies that varied in the degree of specialization. Parasitoids wasps abundance did not differ between landscape types but was strongly negatively related to the percentage of arable land. In contrast, abundances of generalist predators like Coccinellidae were significantly higher in simple landscapes since can benefit from the high availability of a variety of alternative resources within cropping systems. Consequently coccinellidae-to-aphid ratio was significantly higher in fields in homogenous landscapes as compared to fields included in an heterogeneous landscape, suggesting that enemy pressure on cereal aphids increases with landscape simplification. The landscape effect will depend mainly on the degree of specialization of functionally dominant natural enemies, so that the results imply that conservation actions aiming to optimise abundance for one taxonomic group in the agricultural landscape will not automatically increase abundance of other groups. Given that the strength of natural enemy impact on biocontrol depends on landscape features and the role of functionally dominant natural enemies. So, therefore it is essential to focus the future empirical work in examining the schedule of agricultural landscapes that maintain a diversity of generalist and specialist natural enemies.
Resumo:
A l'heure actuelle, le monitoring de la problématique du cannabis en Suisse constitue un ensemble de travaux qui permettent le suivi de la situation au niveau national et qui sont mis en oeuvre par un consortium d'instituts. Ce monitoring comprend l'étude présentée dans ce rapport, l'étude sentinelle. Elle s'intéresse à l'évolution de la situation en matière de cannabis ainsi qu'à la gestion de cette situation au niveau local. Ainsi, les observations relevées par des professionnels de terrain dans différents domaines (santé/social, école/formation professionnelle, police/justice) et dans quatre cantons suisses (St Gall, Tessin, Vaud, Zurich), dits "sentinelle", sont récoltées et analysées annuellement.
Resumo:
Eusociality is taxonomically rare, yet associated with great ecological success. Surprisingly, studies of environmental conditions favouring eusociality are often contradictory. Harsh conditions associated with increasing altitude and latitude seem to favour increased sociality in bumblebees and ants, but the reverse pattern is found in halictid bees and polistine wasps. Here, we compare the life histories and distributions of populations of 176 species of Hymenoptera from the Swiss Alps. We show that differences in altitudinal distributions and development times among social forms can explain these contrasting patterns: highly social taxa develop more quickly than intermediate social taxa, and are thus able to complete the reproductive cycle in shorter seasons at higher elevations. This dual impact of altitude and development time on sociality illustrates that ecological constraints can elicit dynamic shifts in behaviour, and helps explain the complex distribution of sociality across ecological gradients.
Resumo:
In some ants, bees, and wasps, workers kill or "police" male eggs laid by other workers in order to maintain the reproductive primacy of the queen. Kin selection theory predicts that multiple mating by the queen is one factor that can selectively favor worker policing. This is because when the queen is mated to multiple males, workers are more closely related to the queen's sons than to the sons of other workers. Earlier work has suggested that reproductive patterns in the German wasp Vespula germanica may contradict this theory, because in some colonies a large fraction of the adult males were inferred to be the workers' sons, despite the effective queen mating frequency being greater than 2 (2.4). In the present study, we reexamine the V. germanica case and show that it does support the theory. First, genetic analysis confirms that the effective queen mating frequency is high, 2.9, resulting in workers being more related to the queen's sons than to other workers' sons. Second, behavioral assays show that worker-laid eggs are effectively killed by other workers, despite worker-laid eggs having the same intrinsic viability as queen-laid ones. Finally, we estimate that approximately 58.4% of the male eggs but only 0.44% of the adult males are worker derived in queenright colonies, consistent with worker reproduction being effectively policed.
Resumo:
The study of sex allocation in social Hymenoptera (ants, bees, and wasps) provides an excellent opportunity for testing kin-selection theory and studying conflict resolution. A queen-worker conflict over sex allocation is expected because workers are more related to sisters than to brothers, whereas queens are equally related to daughters and sons. If workers fully control sex allocation, split sex ratio theory predicts that colonies with relatively high or low relatedness asymmetry (the relatedness of workers to females divided by the relatedness of workers to males) should specialize in females or males, respectively. We performed a meta-analysis to assess the magnitude of adaptive sex allocation biasing by workers and degree of support for split sex ratio theory in the social Hymenoptera. Overall, variation in relatedness asymmetry (due to mate number or queen replacement) and variation in queen number (which also affects relatedness asymmetry in some conditions) explained 20.9% and 5% of the variance in sex allocation among colonies, respectively. These results show that workers often bias colony sex allocation in their favor as predicted by split sex ratio theory, even if their control is incomplete and a large part of the variation among colonies has other causes. The explanatory power of split sex ratio theory was close to that of local mate competition and local resource competition in the few species of social Hymenoptera where these factors apply. Hence, three of the most successful theories explaining quantitative variation in sex allocation are based on kin selection.