579 resultados para Galactic Cannibalism
Resumo:
High-resolution observations of five OB-type main-sequence stars in the Large Magellanic Cloud (LMC) have been obtained with the UCL echelle spectrograph on the 3.9-m Anglo-Australian Telescope. These spectra have been analysed using LTE model- atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As these stars are located within the hydrogen burning main-sequence band, their surface abundances should reflect those of the present-day interstellar medium. Detailed line-by-line differential analyses have been undertaken relative to Galactic comparison stars. We conclude that there exists a general metal deficiency of - 0.31 +/- 0.04 dex within the LMC, and find no significant abundance variations between cluster and field stars. There is also tentative evidence to suggest a lower oxygen to iron abundance ratio, and an over-deficiency of magnesium relative to the other alpha-elements. These are discussed in terms of previous abundance analyses and models of discontinuous (or bursting) star formation within the LMC. Finally, there is some evidence to suggest a greater chemical enrichment of material within the H. region LH104.
Resumo:
We present high quality spectroscopic data for two massive stars in the OB 10 association of M31, OB 10-64 (B0 la) and OB 10-WRI (WC6). Medium resolution spectra of both stars were obtained using the ISIS spectrograph on the William Herschel Telescope. This is supplemented with Hubble Space Telescope STIS UV spectroscopy and Keck I HIRES data for OB 10-64. A non- local thermodynamic equilibrium (LTE) model atmosphere and abundance analysis for OB 10-64 is presented, indicating that this star has similar photospheric CNO, Mg and Si abundances to solar neighbourhood massive stars. A wind analysis of this early B-type supergiant reveals a mass-loss rate of (M)over dot = 1.6 x 10(-6) M-circle dot yr(-1), and v(infinity) = 1650 km s(-1). The corresponding wind momentum is in good agreement with the wind momentum-luminosity relationship found for Galactic early-B supergiants. Observations of OB 10-WRI are analysed using a non-LTE, line-blanketed code, to reveal approximate stellar parameters of log L/L-circle dot similar to 5.7, T-* - 75 kK, v(infinity) similar to 3000 km s(-1), (M)over dot/(M-circle dot yr(-1)) similar to 10(-4.3) adopting a clumped wind with a filling factor of 10 per cent. Quantitative comparisons are made with the Galactic WC6 star HD 92809 (WR23) revealing that OB 10-WR1 is 0.4 dex more luminous, though it has a much lower C/He ratio (similar to0.1 versus 0.3 for HD 92809). Our study represents the first detailed, chemical model atmosphere analysis for either a B-type supergiant or a Wolf- Rayet (WR) star in Andromeda, and shows the potential of how such studies can provide new information on the chemical evolution of galaxies and the evolution of massive stars in the local Universe.
Resumo:
High-resolution spectroscopic VLT/UVES observations are presented for the B-type main-sequence star, AV 304, in the Small Magellanic Cloud (SMC). These spectra have been analysed using LTE model-atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As AV 304 is located within the hydrogen burning main-sequence band, its chemical composition should reflect that of the SMC interstellar medium (ISM). A detailed line-by-line differential analysis has been undertaken relative to a Galactic comparison star. A general metal deficiency for the a-process elements O, Si & S of -0.43 +/- 0.05 dex is found for AV 304, with iron having a similar underabundance. Oxygen may be relatively over- abundant by similar to0.1 dex and carbon and aluminium underabundant by similar to0.2 dex. A large nitrogen underabundance (of -1.2 dex relative to hydrogen and -0.7 dex relative to iron) is found. This is interpreted in terms of the CNO bi-cycle having been suppressed in the SMC. Furthermore, the large nitrogen deficiency is in excellent agreement with that found for SMC H II regions. Indeed, this represents a first for stellar astrophysics - confirming the low base-line nitrogen composition of the SMC ISM (viz. 12+log(N/H) similar to 6.66 +/- 0.10 dex).
Resumo:
Spectroscopic analyses of 7 SMC B-type supergiants and 1 giant have been undertaken using high resolution optical data obtained on the VLT with UVES. FASTWIND, a non-LTE, spherical, line-blanketed model atmosphere code was used to derive atmospheric and wind parameters of these stars as well as their absolute abundances. Mass-loss rates, derived from H-alpha profiles, are in poor agreement with metallicity dependent theoretical predictions. Indeed the wind-momenta of the SMC stars appear to be in good agreement with the wind-momentum luminosity relationship (WLR) of Galactic B-type stars, a puzzling result given that line-driven wind theory predicts a metallicity dependence. However the galactic stars were analysed using unblanketed model atmospheres which may mask any dependence on metallicity. A mean nitrogen enhancement of a factor of 14 is observed in the supergiants whilst only an enrichment of a factor of 4 is present in the giant, AV216. Similar excesses in nitrogen are observed in O-type dwarfs and supergiants in the same mass range, suggesting that the additional nitrogen is produced while the stars are still on the main-sequence. These nitrogen enrichments can be reproduced by current stellar evolution models, which include rotationally induced mixing, only if large initial rotational velocities of 300 kin s(-1) are invoked. Such large rotational velocities appear to be inconsistent with observed v sin i distributions for O-type stars and B-type supergiants. Hence it is suggested that the currently available stellar evolution models require more efficient mixing for lower rotational velocities.
Resumo:
High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness-of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimating projected rotational velocities ( v sin i) but the former being used to estimate macroturbulent velocities. The projected rotational velocity estimates range from approximately 20 to 60 kms(-1), apart from one SMC supergiant, Sk 191, with a v sin i similar or equal to 90 km s(-1). Apart from Sk 191, the distribution of projected rotational velocities as a function of spectral type are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5 - 10 km s(-1), whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 km s(-1). The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 kms(-1) at an effective temperature of 28 000 K ( approximately B0 spectral type) decreasing to 32 km s(-1) at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution ( although other distributions cannot be discounted) with an 1/e half-width varying from approximately 20 km s(-1) at B8 to 60 km s(-1) at B0 spectral types.
Resumo:
An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.
An exploratory non-LTE model atmosphere analysis of B-type supergiants in the Small Magellanic Cloud
Resumo:
A preliminary differential non-LTE model atmosphere analysis of moderate resolution (R ~ 5 000) and signal-to-noise ratio spectra of 48 Small Magellanic Cloud B-type supergiants is presented. Standard techniques are adopted, viz. plane-parallel geometry and radiative and hydrostatic equilibrium. Spectroscopic atmospheric parameters (T_eff, log g and v_turb), luminosities and chemical abundances (He, C, N, O, Mg and Si) are estimated. These are compared with those deduced for a comparable sample of Galactic supergiants. The SMC targets appear to have similar atmospheric parameters, luminosities and helium abundances to the Galactic sample. Their magnesium and silicon underabundances are compatible with those found for main sequence SMC objects and there is no evidence for any large variation in their oxygen abundances. By contrast both their carbon and nitrogen lines strengths are inconsistent with single abundances, while their nitrogen to carbon abundance ratios appear to vary by at least as much and probably more than that found in the Galactic sample.
Resumo:
We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts.
Resumo:
We present Strömgren uvby photometry for a sample of 31 high Galactic latitude stars selected from the Palomar-Green Survey. The data include photometric magnitudes accurate to
Resumo:
The role of optical FeIII absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~3560-9200Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed FeIII spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY [plane-parallel, non-local thermodynamic equilibrium (LTE)], with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with the Fiber-fed Extended Range Optical Spectrograph (FEROS), reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of FeIII transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
High-resolution Hubble Space Telescope ultraviolet spectra for five B-type stars in the Magellanic Bridge and in the Large (LMC) and Small (SMC) Magellanic Clouds have been analysed to estimate their iron abundances. Those for the Clouds are lower than estimates obtained from late-type stars or the optical lines in B-type stars by approximately 0.5 dex. This may be due to systematic errors possibly arising from non-local thermodynamic equilibrium (non-LTE) effects or from errors in the atomic data, as similar low Fe abundances have previously been reported from the analysis of the ultraviolet spectra of Galactic early-type stars. The iron abundance estimates for all three Bridge targets appear to be significantly lower than those found for the SMC and LMC by approximately -0.5 and -0.8 dex, respectively, and these differential results should not be affected by any systematic errors present in the absolute abundance estimates. These differential iron abundance estimates are consistent with the underabundances for C, N, O, Mg and Si of approximately -1.1 dex relative to our Galaxy previously found in our Bridge targets. The implications of these very low metal abundances for the Magellanic Bridge are discussed in terms of metal deficient material being stripped from the SMC.
Resumo:
We present a synthesis of empirical and theoretical work investigating how parasites influence competitive and predatory interactions between other species. We examine the direct and indirect effects of parasitism and discuss examples of density and parasite-induced trait-mediated effects. Recent work reveals previously unrecognized complexity in parasite-mediated interactions. In addition to parasite-modified and apparent competition leading to species exclusion or enabling coexistence, parasites and predators interact in different ways to regulate or destablize the population dynamics of their joint prey. An emerging area is the impact of parasites on intraguild predation (IGP). Parasites can increase vulnerability of infected individuals to cannibalism or predation resulting in reversed species dominance in IGP hierarchies. We discuss the potential significance of parasites for community structure and biodiversity, in particular their role in promoting species exclusion or coexistence and the impact of emerging diseases. Ongoing invasions provide examples where parasites mediate native/invader interactions and play a key role in determining the outcome of invasions. We highlight the need for more quantitative data to assess the impact of parasites on communities, and the combination of theoretical and empirical studies to examine how the effects of parasitism scale up to community-level processes.
Resumo:
Nova V458 Vul erupted on 2007 August 8 and reached a visual magnitude of 8.1 a few days later. Ha images obtained 6 weeks before the outburst as part of the IPHAS Galactic plane survey reveal an 18th magnitude progenitor surrounded by an extended nebula. Subsequent images and spectroscopy of the nebula reveal an inner nebular knot increasing rapidly in brightness due to flash ionization by the nova event. We derive a distance of 13 kpc based on light travel time considerations, which is supported by two other distance estimation methods. The nebula has an ionized mass of 0.2 Msolar and a low expansion velocity: this rules it out as ejecta from a previous nova eruption, and is consistent with it being a ~14,000 year old planetary nebula, probably the product of a prior common envelope (CE) phase of evolution of the binary system. The large derived distance means that the mass of the erupting WD component of the binary is high. We identify two possible evolutionary scenarios, in at least one of which the system is massive enough to produce a Type Ia supernova upon merging.