992 resultados para GROUND-STATES
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
O domínio do Cerrado compreende uma área contínua nos estados centrais do Brasil e áreas disjuntas em outros estados, incluindo São Paulo. Essa vegetação ocupava originalmente 21% do território brasileiro, restando atualmente apenas 21,6% de sua extensão original. A área recoberta por essa vegetação em São Paulo cobria 14% de sua área total e seus remanescentes recobrem menos de 1% da ocorrência original dessa vegetação. Estudos recentes indicam que o valor da produtividade líquida no Cerrado Pé-de-Gigante (SP) constitui um pequeno dreno de carbono e indicou que a sazonalidade foi o fator determinante do valor observado. Os estudos dos fluxos de carbono em ecossistemas terrestres são raramente acompanhados de abordagens ecofisiológicas de modo a explorar a relação funcional das espécies que compõem o ecossistema e os valores líquidos obtidos para o mesmo. Assim, o objetivo deste trabalho foi caracterizar estruturalmente a vegetação presente na área de maior influência da torre de fluxo instalada no Cerrado Pé-de-Gigante, visando possibilitar estudos relacionados à quantificação em longo prazo da dinâmica dos fluxos de água, energia e CO2 na vegetação de Cerrado. Para isso foram levantadas 20 parcelas (10 x 10 m) em 0,2 ha de Cerrado, e amostraram-se todas as plantas com perímetro ao nível do solo >6 cm (exceto lianas e árvores mortas). A distribuição das classes de diâmetro e estrutura vertical, assim como os parâmetros fitossociológicos foram analisados. Encontramos 1451 indivíduos, distribuídos em 85 espécies, 52 gêneros e 31 famílias. A densidade absoluta e área basal foram de 7255 ind. ha-1 e de 7,9 m².ha-1, respectivamente. A família Leguminosae apresentou o maior número de espécies (13). O Índice de diversidade de Shannon (H') foi 3,27 nats.ind-1. A distribuição em classes de diâmetro mostrou uma curva de "J" invertido, estando a maioria dos indivíduos na primeira classe. Concluímos que a área deve ser classificada como Cerrado denso, devido principalmente à dominância pela espécie arbórea Anadenanthera falcata, cuja ocorrência no estado foi relatada apenas em locais com solos ricos em saturação de bases na região das Cuestas Basálticas, devido também à maior área basal dos indivíduos, comparando com outros fragmentos de Cerrado. Além da espécie citada, Myrcia lingua e Xylopia aromatica, apresentaram os maiores IVI (Valor de importância).
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goias, Mato Grosso do Sul, Minas Gerais, Sao Paulo, and Para. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (Sao Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from Sao Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.
Resumo:
Background: It is known that when barefoot, gait biomechanics of diabetic neuropathic patients differ from nondiabetic individuals. However, it is still unknown whether these biomechanical changes are also present during shod gait which is clinically advised for these patients. This study investigated the effect of the participants own shoes on gait biomechanics in diabetic neuropathic individuals compared to barefoot gait patterns and healthy controls. Methods: Ground reaction forces and lower limb EMG activities were analyzed in 21 non-diabetic adults (50.9 +/- 7.3 yr, 24.3 +/- 2.6 kg/m(2)) and 24 diabetic neuropathic participants (55.2 +/- 7.9 yr, 27.0 +/- 4.4 kg/m(2)). EMG patterns of vastus lateralis, lateral gastrocnemius and tibialis anterior, along with the vertical and antero-posterior ground reaction forces were studied during shod and barefoot gait. Results: Regardless of the disease, walking with shoes promoted an increase in the first peak vertical force and the peak horizontal propulsive force. Diabetic individuals had a delay in the lateral gastrocnemius EMG activity with no delay in the vastus lateralis. They also demonstrated a higher peak horizontal braking force walking with shoes compared to barefoot. Diabetic participants also had a smaller second peak vertical force in shod gait and a delay in the vastus lateralis EMG activity in barefoot gait compared to controls. Conclusions: The change in plantar sensory information that occurs when wearing shoes revealed a different motor strategy in diabetic individuals. Walking with shoes did not attenuate vertical forces in either group. Though changes in motor strategy were apparent, the biomechanical did not support the argument that the use of shoes contributes to altered motor responses during gait.
Resumo:
The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of 7: gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gonulii in 152 free-range chickens (Gallus domesticus) from 22 municipalities in 7 northeastern states (Pernambuco, Rio Grande do Norte, Maranh5o, Bahia, Ceara, Sergipe, and Alagoas) of Brazil was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT); 81 (53.3 %) chickens had titers of 1:5 in 26, 1:10 in 9, 1:20 in 4, 1:40 in 1, 1:80 in 6, 1:160 in 6, 1:320 in 13, 1:640 in 6, 1:1,280 in 3, 1:2,560 in 6, and 1:5,120 or higher in I. Hearts and brains of 81 seropositive chickens were bioassayed individually in mice. Toxoplasma gondii was isolated from 23 chickens with MAT titers of 1:5 or higher; the isolates were designated TgCKBr165-187. Five isolates killed all infected mice. Results indicate widespread contamination of rural environment in Brazil with T. gondii oocysts.
Resumo:
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Resumo:
Context. We present spectroscopic ground-based observations of the early Be star HD 49330 obtained simultaneously with the CoRoT-LRA1 run just before the burst observed in the CoRoT data. Aims. Ground-based spectroscopic observations of the early Be star HD 49330 obtained during the precursor phase and just before the start of an outburst allow us to disantangle stellar and circumstellar contributions and identify modes of stellar pulsations in this rapidly rotating star. Methods. Time series analysis (TSA) is performed on photospheric line profiles of He I and Si III by means of the least squares method. Results. We find two main frequencies f1 = 11.86 c d(-1) and f2 = 16.89 c d(-1) which can be associated with high order p-mode pulsations. We also detect a frequency f3 = 1.51 c d(-1) which can be associated with a low order g-mode. Moreover we show that the stellar line profile variability changed over the spectroscopic run. These results are in agreement with the results of the CoRoT data analysis, as shown in Huat et al. (2009). Conclusions. Our study of mid-and short-term spectroscopic variability allows the identification of p-and g-modes in HD 49330. It also allows us to display changes in the line profile variability before the start of an outburst. This brings new constraints for the seimic modelling of this star.
Resumo:
Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.
Resumo:
The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
A correlated many-body basis function is used to describe the (4)He trimer and small helium clusters ((4)HeN) with N = 4-9. A realistic helium dimer potential is adopted. The ground state results of the (4)He dimer and trimer are in close agreement with earlier findings. But no evidence is found for the existence of Efimov state in the trimer for the actual (4)He-(4)He interaction. However, decreasing the potential strength we calculate several excited states of the trimer which exhibit Efimov character. We also solve for excited state energies of these clusters which are in good agreement with Monte Carlo hyperspherical description. (C) 2011 American Institute of Physics. [doi:10.1063/1.3583365]
Resumo:
We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase transition is signalized both in the quantum and classical versions of the model. In the present contribution we show that not only the quantum ground state but also higher energy states, up to the energy of the corresponding classical separatrix orbit, ""sense"" the transition. We also show two types of one-to-one correspondences in this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum states and the changes in the density of energy levels; on the other hand, between the variation in the expected number of excitons for a given quantum state and the behavior of the corresponding classical orbit.