774 resultados para GPGPU Parallel Computing
Resumo:
One of the challenges in scientific visualization is to generate software libraries suitable for the large-scale data emerging from tera-scale simulations and instruments. We describe the efforts currently under way at SDSC and NPACI to address these challenges. The scope of the SDSC project spans data handling, graphics, visualization, and scientific application domains. Components of the research focus on the following areas: intelligent data storage, layout and handling, using an associated “Floor-Plan” (meta data); performance optimization on parallel architectures; extension of SDSC’s scalable, parallel, direct volume renderer to allow perspective viewing; and interactive rendering of fractional images (“imagelets”), which facilitates the examination of large datasets. These concepts are coordinated within a data-visualization pipeline, which operates on component data blocks sized to fit within the available computing resources. A key feature of the scheme is that the meta data, which tag the data blocks, can be propagated and applied consistently. This is possible at the disk level, in distributing the computations across parallel processors; in “imagelet” composition; and in feature tagging. The work reflects the emerging challenges and opportunities presented by the ongoing progress in high-performance computing (HPC) and the deployment of the data, computational, and visualization Grids.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.
Resumo:
Coset enumeration is a most important procedure for investigating finitely presented groups. We present a practical parallel procedure for coset enumeration on shared memory processors. The shared memory architecture is particularly interesting because such parallel computation is both faster and cheaper. The lower cost comes when the program requires large amounts of memory, and additional CPU's. allow us to lower the time that the expensive memory is being used. Rather than report on a suite of test cases, we take a single, typical case, and analyze the performance factors in-depth. The parallelization is achieved through a master-slave architecture. This results in an interesting phenomenon, whereby the CPU time is divided into a sequential and a parallel portion, and the parallel part demonstrates a speedup that is linear in the number of processors. We describe an early version for which only 40% of the program was parallelized, and we describe how this was modified to achieve 90% parallelization while using 15 slave processors and a master. In the latter case, a sequential time of 158 seconds was reduced to 29 seconds using 15 slaves.
Resumo:
Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision
Resumo:
This paper presents a means of structuring specifications in real-time Object-Z: an integration of Object-Z with the timed refinement calculus. Incremental modification of classes using inheritance and composition of classes to form multi-component systems are examined. Two approaches to the latter are considered: using Object-Z's notion of object instantiation and introducing a parallel composition operator similar to those found in process algebras. The parallel composition operator approach is both more concise and allows more general modelling of concurrency. Its incorporation into the existing semantics of real-time Object-Z is presented.
Resumo:
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.