267 resultados para GONDWANA
Resumo:
The Itremo region in Central Madagascar comprises a deformed metasedimentary sequence (Itremo Group) that has undergone greenschist to lower amphibolite facies metamorphism. During a first phase of deformation (D1) Itremo Group sediments were deformed into a fold-and-thrust belt and transported toward the E to NE on top of migmatitic gneisses rocks of Anatananarivo block. A second phase of deformation (D2) affected both the fold-and-thrust belt and structurally underlying units, and formed large-scale N-S trending folds with steeply dipping axial planes. A Late Neoproterozoic Th–U–Pb XRF monazite age (565±17 Ma) dates the emplacement of a granite that truncates first-phase structures in the Itremo Group, and indicates that the fold-and-thrust belt formed prior to ≈565 Ma. Th–U–Pb electron microprobe dating was applied to elongated monazites that lie within the first-phase foliation of Itremo Group metapelites. The detrital cores of zoned monazites reveal two distinct age populations at ∼2000 and 1700 Ma, the latter age giving a maximum depositional age for the Itremo Group. Statistical analysis of ages determined from the rims of zoned monazites and from unzoned monazites indicates three Late Proterozoic–Early Paleozoic monazite growth events at about 565–540, 500 and 430 Ma. The oldest age population is contemporaneous within error, with the intrusion of the dated granite. The two younger age populations are found both in the Th–U–Pb and Ar–Ar data; together with the perturbation of the Rb–Sr system we interpret both ages as due to alteration related to fluid circulation events, possibly connected to the emplacement of pegmatite fields in Central Madagascar. Syn-D1 tectonic growth of contact metamorphism minerals such as andalusite has been observed locally in metapelites along the margin of Middle Neoproterozoic (≈800 Ma) granites, suggesting that D1 in the Itremo Group is contemporaneous with the intrusion of granites at ≈800 Ma. The N-S trending D2 folds are associated with ≈E-W shortening during the final assembly of Gondwana in Late Neoproterozoic–Early Cambrian times.
Resumo:
Morphological and U-Pb isotope studies on sedimentary zircons reflect the orogenic evolution of their former host rocks. The orogenic history of detrital zircons from the Trinity Peninsula Formation (TPF) defines the former geological surrounding of the sedimentation basin of the TPF. Same few weil rounded, polycyclic zircons of Precambrian age and Cambrian overprint give hints for an old cratonic source rock. Because of their very low frequency compared with euhedral types, the contribution of an cratonic shield area to the bulk of the sedimentary debris is neglectable low. Euhedral zircons of granitoid origin and Carboniferous age indicate a derivation from an area of widespread Carboniferous intrusions. Except for southern South America and unsurveyed regions in the Antarctic Peninsula itself, no region could deliver zircons with a Carboniferous age record. The only acceptable explanation for the origin of these zircons is a position of the Antarctic Peninsula during the sedimentation of the TPF approximately southwest of southern South America.
Resumo:
The ischnacanthid acanthodian Grenfellacanthus zerinae gen. et sp. nov. is described on the basis of two large jaw bones from the Late Devonian (late Famennian) Hunter Formation, near Grenfell, N.S.W. The new species is the youngest known ischnacanthid, and the largest ischnacanthid from Gondwana. As for many ischnacanthids, the structure of the jaws and teeth indicate that Grenfellacanthus was probably an ambush predator.
Resumo:
The 40 km of coastline from Fortrose to Chaslands Mistake (southeastern South Island, New Zealand) comprises sediments that are part of the Early-Middle Jurassic of the Murihiku Terrane. The sediments are dominantly fluvial with some marine beds and alluvial fan deposition, and display an evolution of fluvial style which progresses from perennial flow to seasonal flow. The McPhee Cove Conglomerate is a prominent unit to the north. It has been used to separate two formations which would otherwise, on inherent lithological grounds, be difficult to distinguish. This paper discusses several similar conglomerates which occur in the south, but which are separated from the type area of the McPhee Conglomerate by major tectonic disruption. Hence, the existing lithostratigraphic nomenclature to the north, including the McPhee Cove Conglomerate, cannot be simply extended southwards. The Fortrose-Chaslands area appears to consist of two tectonic blocks, the Slope Point Block and the Brothers Block, which are separated from each other and from the adjacent Papatowai Block by major strike faults (or fault zones). A change is proposed to the existing stratigraphy which involves recognising all terrestrial sediments as part of the False Island Formation. Four prominent clast-supported conglomerate horizons are named as members of the False Islet Formation: the White Head Conglomerate, Black Bluff Conglomerate. Hoiho Conglomerate, and Slope Point Conglomerate Members. The latter contains five named conglomerate beds.
Resumo:
Silicified fragments of false-trunks of the fern, Tempskya judithae sp. nov., are described from lower Cretaceous (latest Albian) sediments near Winton, central-western Queensland. The species is characterised by a three-layered sclerenchymatous cortex and a two-layered pith of sclerenchyma cells. In possessing these characters, T judithae is more similar to T readii than to other species of Tempskya. However, the Australian species differs from T readii in the abaxial shape of the petiole xylem trace (concave in T judithae, convex in T readii) and in symmetry attributes of the leaf-bases within the false-trunk (random in T judithae and radially symmetrical in T readii). T judithae is the first record of Tempskya from Australia and the second from Gondwana; the known distribution range of the genus embraces a broad area in mid-high latitudinal regions of Laurasia and the Gondwana record now comprises Australia and Argentina. Ecological signals of plant fossil assemblages recorded from the Australian sediments are in accord with flood plain habitats and a temperate climatic regime. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
New K-Ar and Ar-40/Ar-39 data of tholeiitic and alkaline dike swarms from the onshore basement of the Santos Basin (SE Brazil) reveal Mesozoic and Tertiary magmatic pulses. The tholeiitic rocks (basalt, dolerite, and microgabbro) display high TiO2 contents (average 3.65 wt%) and comprise two magmatic groups. The NW-oriented samples of Group A have (La/Yb)N ratios between 15 and 32.3 and range in age from 192.9 +/- 2.2 to 160.9 +/- 1.9 Ma. The NNW-NNE Group B samples, with (La/Yb)(N) ratios between 7 and 16, range from 148.3 +/- 3 to 133.9 +/- 0.5 Ma. The alkaline rocks (syenite, trachyte, phonolite, alkaline basalts, and lamprophyre) display intermediate-K contents and comprise dikes, plugs, and stocks. Ages of approximately 82 Ma were obtained for the lamprophyre dikes, 70 Ma for the syenite plutons, and 64-59 Ma for felsic dikes. Because Jurassic-Early Cretaceous basic dikes have not been reported in SE Brazil, we might speculate that, during the emplacement of Group A dikes, extensional stresses were active in the region before the opening of the south Atlantic Ocean and coeval with the Karoo magmatism described in South Africa. Group B dikes yield ages compatible with those obtained for Serra Geral and Ponta Grossa magmatism in the Parana Basin and are directly related to the breakup of western Gondwana. Alkaline magmatism is associated with several tectonic episodes that postdate the opening of the Atlantic Ocean and related to the upwelling of the Trindade plume and the generation of Tertiary basins southeast of Brazil. In the studied region, alkaline magmatism can be subdivided in two episodes: the first one represented by lamprophyre dykes of approximately 82 Ma and the second comprised of felsic alkaline stocks of approximately 70 Ma and associated dikes ranging from 64 to 59 Ma. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Cretaceous-Tertiaty (K-T) boundary (ca. 65 Ma) sections on a Southwest Pacific island containing dinosaurs were unknown until March 2003 when theropod bones were recovered from the Takatika Grit on the remote Chatham Islands (latitude 44 degrees S, longitude 176 degrees W), along the Chatham Rise. Tectonic and palaeontologic evidence support the eastward extension of a ca. 900 km land bridge that connected the islands to what is now New Zealand prior to the K-T boundary. The Chathams terrestrial fauna inhabited coastal, temperate environments along a low-lying, narrow, crustal extension of the New Zealand subcontinent, characterised by a tectonically dynamic, volcanic landscape with eroding hills (horsts) adjacent to flood plains and deltas, all sediments accumulating in grabens. This finger-like tract was blanketed with a conifer and clubmoss (Lycopodiopsida) dominated forest. The Chatham Islands region would have, along with New Zealand, provided a dinosaur island sanctuary after separating from the Gondwana margin ca. 80 Ma. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
While the crocodyliform. lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms - members of Eusuchia - do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98-95 Myr ago; Albian-Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms - a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana.
Resumo:
Subsurface stratigraphic analysis of Devonian strata from the Rio do Peixe Basin, newly recognized by palynological studies, has resulted in the identification of two new lithostratigraphic units assembled in the Santa Helena Group. The Pilões Formation, the lower unit, is composed mainly of dark mudstones and medium-tovery fine-grained sandstones, with minor conglomerates and breccias. The Triunfo Formation, the upper unit, comprises whitish grey, kaolinitic, coarse-grained to conglomeratic, cross stratified sandstones and conglomerates, with interbedded mudstones and fine-grained sandstones. These units were characterized using cores, sidewall and cuttings samples, conventional logs and image log, from three wells drilled by PETROBRAS, and 3D seismic data. The Pilões Formation is interpreted as prodeltaic facies, with lesser associated subaqueous talus, debrite and sandy turbidite lobe facies, distal part of fandelta and braided fluviodeltaic facies of Triunfo Formation. The Santa Helena Group corresponds to the Lower Devonian tectono-sequence deposited in a NW-SE-trending graben during a transgressiveregressive cycle. With 343 meters of thickness (isochore) in well 1-PIL-1-PB (Pilões 1), this sequence has a non-conformity at the lower boundary and its upper boundary is an unconformity with the Lower Cretaceous tectono-sequence (Rio do Peixe Group), that represents a hiatus of about 265 million years. Ignimbrites and coignimbrite breccias (Poço da Jurema volcanic breccia), related to an unknown pyroclastic volcanic event, were recognized at the northern margin of the Sousa halfgraben. Evidence from well data suggests that this event is coeval with the Devonian graben filling. The present study indicates a polyhistorical tectono-volcanosedimentary evolution of the basin. This lithostratigraphic update brings new perspectives for geological research in the Rio do Peixe Basin, as well as in other inland basins of the Northeastern of Brazil. The results of the research also contribute to the kwnoledge of the Borborema Province and western Gondwana paleogeography during the Early Devonian.
Resumo:
We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.
Resumo:
We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.
Resumo:
Samples of high grade metamorphic basement rocks of Wilson Terrane cropping out in the Deep Freeze Range and on Kay Island were collected during GANOVEX VI to study their isotopic evolution. The age and origin of granulite facies gneisses and of their migmatite host rocks are especially of interest for the interpretation of the geological and tectonic development of North Victoria Land. Another important research aspect is the influence of the polyphase metamorphic evolution on the isotopic systems of whole rocks and minerals like zircon, garnet, orthopyroxene, amphibole and feldspar.
Resumo:
A lenticle of organic matter in a piece of dolomite rock embedded in Triassic sandy mudstone of Core 547B-35 (DSDP Leg 79) was identified as inertinite-rich coal by organic petrography and analytical pyrolysis. About 95% of the organic matter recognized under the microscope consists of pyrofusinite, degradofusinite, and inertodetrinite. Gaseous hydrocarbons evolved during pyrolysis are rich in methane and are characteristic of inertinitic material. The organic matter is suggested to be a piece of redeposited Permian Gondwana coal.