857 resultados para GLUCOSE METABOLISM
Resumo:
It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.
Resumo:
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Resumo:
ABSTRACT : BACKGROUND : Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS : We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS : Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION : A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.
Resumo:
Studies suggest that depression affects glucose metabolism, and therefore is a risk factor for insulin resistance. The association between depression and insulin resistance has been investigated in a number of studies, but there is no agreement on the results. The objective of this study is to survey the epidemiological studies, identify the ones that measured the association of depression (as exposure) with insulin resistance (as outcome), and perform a systematic review to assess the reliability and strength of the association. For high quality reporting, and assessment, this systematic review used the outlined procedures, guidelines and recommendations for reviews in health care, suggested by the Centre for Reviews and Dissemination, along with recommendations from the STROBE group (Strengthening the Reporting of Observational Studies in Epidemiology). Ovid MEDLINE 1996 to April Week 1 2010, was used to identify the relevant epidemiological studies. To identify the most relevant set of articles for this systematic review, a set of inclusion and exclusion criteria were applied. Six studies that met the specific criteria were selected. Key information from identified studies was tabulated, and the methodological quality, internal and external validity, and the strength of the evidence of the selected studies were assessed. The result from the tabulated data of the reviewed studies indicates that the studies either did not apply a case definition for insulin resistance in their investigation, or did not state a specific value for the index used to define insulin resistance. The quality assessment of the reviewed studies indicates that to assess the association between insulin resistance and depression, specifying a case definition for insulin resistance is important. The case definition for insulin resistance is defined by the World Health Organization and the European Group for the Study of Insulin Resistance as the insulin sensitivity index of the lowest quartile or lowest decile of a general population, respectively. Three studies defined the percentile cut-off point for insulin resistance, but did not give the insulin sensitivity index value. In these cases, it is not possible to compare the results. Three other studies did not define the cut-off point for insulin resistance. In these cases, it is hard to confirm the existence of insulin resistance. In conclusion, to convincingly answer our question, future studies need to adopt a clear case definition, define a percentile cut-off point and reference population, and give value of the insulin resistance measure at the specified percentile.^
Resumo:
Each year, 150 million people sustain a Traumatic Brain Injury (TBI). TBI results in life-long cognitive impairments for many survivors. One observed pathological alteration following TBI are changes in glucose metabolism. Altered glucose uptake occurs in the periphery as well as in the nervous system, with an acute increase in glucose uptake, followed by a prolonged metabolic suppression. Chronic, persistent suppression of brain glucose uptake occurs in TBI patients experiencing memory loss. Abberant post-injury activation of energy-sensing signaling cascades could result in perturbed cellular metabolism. AMP-activated kinase (AMPK) is a kinase that senses low ATP levels, and promotes efficient cell energy usage. AMPK promotes energy production through increasing glucose uptake via glucose transporter 4 (GLUT4). When AMPK is activated, it phosphorylates Akt Substrate of 160 kDa (AS160), a Rab GTPase activating protein that controls Glut4 translocation. Additionally, AMPK negatively regulates energy-consumption by inhibiting protein synthesis via the mechanistic Target of Rapamycin (mTOR) pathway. Given that metabolic suppression has been observed post-injury, we hypothesized that activity of the AMPK pathway is transiently decreased. As AMPK activation increases energy efficiency of the cell, we proposed that increasing AMPK activity to combat the post-injury energy crisis would improve cognitive outcome. Additionally, we expected that inhibiting AMPK targets would be detrimental. We first investigated the role of an existing state of hyperglycemia on TBI outcome, as hyperglycemia correlates with increased mortality and decreased cognitive outcome in clinical studies. Inducing hyperglycemia had no effect on outcome; however, we discovered that AMPK and AS160 phosphorylation were altered post-injury. We conducted vii work to characterize this period of AMPK suppression and found that AMPK phosphorylation was significantly decreased in the hippocampus and cortex between 24 hours and 3 days post-injury, and phosphorylation of its downstream targets was consistently altered. Based on this period of observed decreased AMPK activity, we administered an AMPK activator post-injury, and this improved cognitive outcome. Finally, to examine whether AMPK-regulated target Glut4 is involved in post-injury glucose metabolism, we applied an inhibitor and found this treatment impaired post-injury cognitive function. This work is significant, as AMPK activation may represent a new TBI therapeutic target.
Resumo:
Akt (also known as protein kinase B) serves a central regulator in PI3K/Akt signaling pathways to regulate numerous physiological functions including cell proliferation, survival and metabolism. Akt activation requires the binding of Akt to phospholipid PIP3 on the plasma membrane and subsequent phosphorylation of Akt by its kinases. Growth factor-mediated membrane recruitment of Akt is a crucial step for Akt activation. However, the mechanism of Akt membrane translocation is unclear. Protein ubiquitination is a significant posttranslational modification that controls many biological functions such as protein trafficking and signaling activation. Therefore, we hypothesize that ubiquitination may be involved in Akt signaling activation. We have demonstrated that Akt could be conjugated with non-proteolytic K63-linked ubiquitination by TRAF6 ubiquitin E3 ligase. This modification on Akt was required for membrane recruitment, phosphorylation and activation of Akt in response to growth factor stimulation. The human cancer-associated Akt E17K mutant exhibited an increase in K63-linked ubiquitination, which contributes to the enrichment of membrane recruitment and phosphorylation of Akt. Thus, we conclude that K63-linked ubiquitination is a critical step for oncogenic Akt activation and also involved in human cancer development. Notably, the process of protein ubiquitination can be reversed by deubiquitinating enzymes (DUBs), which play a critical role to terminate signaling activation induced by ubiquitination. To further investigate how ubiquitination cycles regulate Akt activation, we have identified that CYLD as a DUB for Akt, and CYLD inhibited growth factor-induced ubiquitination and activation of Akt. Under serum-depletion condition, CYLD interacts with Akt and keep Akt under inactive state by directly removing K63-linked ubiquitination of Akt. CYLD disassociates with Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. We also demonstrated that CYLD deficiency promoted cancer cell proliferation, survival, glucose metabolism and human prostate cancer development. Therefore, we conclude that CYLD plays a critical role for negatively regulating Akt signaling activation through deubiquitination of Akt. In summary, this study delineated the important mechanism of cycles of ubiquitination and deubiquitination of Akt in regulating membrane translocation and activation of Akt, and TRAF6 and CYLD as central switches for these processes.
Resumo:
ATP-sensitive potassium (KATP) channels in the pancreatic β cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The β cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.
Resumo:
Hepatic glucokinase plays a key role in glucose metabolism as underlined by the anomalies associated with glucokinase mutations and the consequences of tissue-specific knock-out. In the liver, glucokinase transcription is absolutely dependent on the presence of insulin. The cis-elements and trans-acting factors that mediate the insulin effect are presently unknown; this is also the case for most insulin-responsive genes. We have shown previously that the hepatic expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) is activated by insulin. We show here in primary cultures of hepatocytes that the adenovirus-mediated transduction of a dominant negative form of SREBP-1c inhibits the insulin effect on endogenous glucokinase expression. Conversely, in the absence of insulin, the adenovirus-mediated transduction of a dominant positive form of SREBP-1c overcomes the insulin dependency of glucokinase expression. Hepatic fatty acid synthase and Spot-14 are insulin/glucose-dependent genes. For this latter class of genes, the dominant positive form of SREBP-1c obviates the necessity for the presence of insulin, whereas glucose potentiates the effect of SREBP-1c on their expression. In addition, the insulin dependency of lipid accumulation in cultured hepatocytes is overcome by the dominant positive form of SREBP-1c. We propose that SREBP-1c is a major mediator of insulin action on hepatic gene expression and a key regulator of hepatic glucose/lipid metabolism.
Resumo:
The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic β-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The β-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.
Resumo:
The ATP-sensitive K+-channel (KATP channel) plays a key role in insulin secretion from pancreatic β cells. It is closed both by glucose metabolism and the sulfonylurea drugs that are used in the treatment of noninsulin-dependent diabetes mellitus, thereby initiating a membrane depolarization that activates voltage-dependent Ca2+ entry and insulin release. The β cell KATP channel is a complex of two proteins: Kir6.2 and SUR1. The former is an ATP-sensitive K+-selective pore, whereas SUR1 is a channel regulator that endows Kir6.2 with sensitivity to sulfonylureas. A number of drugs containing an imidazoline moiety, such as phentolamine, also act as potent stimulators of insulin secretion, but their mechanism of action is unknown. We have used a truncated form of Kir6.2, which expresses independently of SUR1, to show that phentolamine does not inhibit KATP channels by interacting with SUR1. Instead, our results argue that phentolamine may interact directly with Kir6.2 to produce a voltage-independent reduction in channel activity. The single-channel conductance is unaffected. Although the ATP molecule also contains an imidazoline group, the site at which phentolamine blocks is not identical to the ATP-inhibitory site, because phentolamine block of an ATP-insensitive mutant (K185Q) is normal. KATP channels also are found in the heart where they are involved in the response to cardiac ischemia: they also are blocked by phentolamine. Our results suggest that this may be because Kir6.2, which is expressed in the heart, forms the pore of the cardiac KATP channel.
Resumo:
The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.
Resumo:
Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.
Resumo:
Positron-emission tomography and functional MRS imaging signals can be analyzed to derive neurophysiological values of cerebral blood flow or volume and cerebral metabolic consumption rates of glucose (CMRGlc) or oxygen (CMRO2). Under basal physiological conditions in the adult mammalian brain, glucose oxidation is nearly complete so that the oxygen-to-glucose index (OGI), given by the ratio of CMRO2/CMRGlc, is close to the stoichiometric value of 6. However, a survey of functional imaging data suggests that the OGI is activity dependent, moving further below the oxidative value of 6 as activity is increased. Brain lactate concentrations also increase with stimulation. These results had led to the concept that brain activation is supported by anaerobic glucose metabolism, which was inconsistent with basal glucose oxidation. These differences are resolved here by a proposed model of glucose energetics, in which a fraction of glucose is cycled through the cerebral glycogen pool, a fraction that increases with degree of brain activation. The “glycogen shunt,” although energetically less efficient than glycolysis, is followed because of its ability to supply glial energy in milliseconds for rapid neurotransmitter clearance, as a consequence of which OGI is lowered and lactate is increased. The value of OGI observed is consistent with passive lactate efflux, driven by the observed lactate concentration, for the few experiments with complete data. Although the OGI changes during activation, the energies required per neurotransmitter release (neuronal) and clearance (glial) are constant over a wide range of brain activity.
Resumo:
There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage.
Resumo:
Evidence accumulated over more than 45 years has indicated that environmental stimuli can induce craving for drugs of abuse in individuals who have addictive disorders. However, the brain mechanisms that subserve such craving have not been elucidated. Here a positron emission tomographic study shows increased glucose metabolism in cortical and limbic regions implicated in several forms of memory when human volunteers who abuse cocaine are exposed to drug-related stimuli. Correlations of metabolic increases in the dorsolateral prefrontal cortex, medial temporal lobe (amygdala), and cerebellum with self-reports of craving suggest that a distributed neural network, which integrates emotional and cognitive aspects of memory, links environmental cues with cocaine craving.