932 resultados para GIS BASED PLANNING TOOLS
Resumo:
Dans le contexte climatique actuel, les régions méditerranéennes connaissent une intensification des phénomènes hydrométéorologiques extrêmes. Au Maroc, le risque lié aux inondations est devenu problématique, les communautés étant vulnérables aux événements extrêmes. En effet, le développement économique et urbain rapide et mal maîtrisé augmente l'exposition aux phénomènes extrêmes. La Direction du Développement et de la Coopération suisse (DDC) s'implique activement dans la réduction des risques naturels au Maroc. La cartographie des dangers et son intégration dans l'aménagement du territoire représentent une méthode efficace afin de réduire la vulnérabilité spatiale. Ainsi, la DDC a mandaté ce projet d'adaptation de la méthode suisse de cartographie des dangers à un cas d'étude marocain (la ville de Beni Mellal, région de Tadla-Azilal, Maroc). La méthode suisse a été adaptée aux contraintes spécifiques du terrain (environnement semi-aride, morphologie de piémont) et au contexte de transfert de connaissances (caractéristiques socio-économiques et pratiques). Une carte des phénomènes d'inondations a été produite. Elle contient les témoins morphologiques et les éléments anthropiques pertinents pour le développement et l'aggravation des inondations. La modélisation de la relation pluie-débit pour des événements de référence, et le routage des hydrogrammes de crue ainsi obtenus ont permis d'estimer quantitativement l'aléa inondation. Des données obtenues sur le terrain (estimations de débit, extension de crues connues) ont permis de vérifier les résultats des modèles. Des cartes d'intensité et de probabilité ont été obtenues. Enfin, une carte indicative du danger d'inondation a été produite sur la base de la matrice suisse du danger qui croise l'intensité et la probabilité d'occurrence d'un événement pour obtenir des degrés de danger assignables au territoire étudié. En vue de l'implémentation des cartes de danger dans les documents de l'aménagement du territoire, nous nous intéressons au fonctionnement actuel de la gestion institutionnelle du risque à Beni Mellal, en étudiant le degré d'intégration de la gestion et la manière dont les connaissances sur les risques influencent le processus de gestion. L'analyse montre que la gestion est marquée par une logique de gestion hiérarchique et la priorité des mesures de protection par rapport aux mesures passives d'aménagement du territoire. Les connaissances sur le risque restent sectorielles, souvent déconnectées. L'innovation dans le domaine de la gestion du risque résulte de collaborations horizontales entre les acteurs ou avec des sources de connaissances externes (par exemple les universités). Des recommandations méthodologiques et institutionnelles issues de cette étude ont été adressées aux gestionnaires en vue de l'implémentation des cartes de danger. Plus que des outils de réduction du risque, les cartes de danger aident à transmettre des connaissances vers le public et contribuent ainsi à établir une culture du risque. - Severe rainfall events are thought to be occurring more frequently in semi-arid areas. In Morocco, flood hazard has become an important topic, notably as rapid economic development and high urbanization rates have increased the exposure of people and assets in hazard-prone areas. The Swiss Agency for Development and Cooperation (SADC) is active in natural hazard mitigation in Morocco. As hazard mapping for urban planning is thought to be a sound tool for vulnerability reduction, the SADC has financed a project aimed at adapting the Swiss approach for hazard assessment and mapping to the case of Morocco. In a knowledge transfer context, the Swiss method was adapted to the semi-arid environment, the specific piedmont morphology and to socio-economic constraints particular to the study site. Following the Swiss guidelines, a hydro-geomorphological map was established, containing all geomorphic elements related to known past floods. Next, rainfall / runoff modeling for reference events and hydraulic routing of the obtained hydrographs were carried out in order to assess hazard quantitatively. Field-collected discharge estimations and flood extent for known floods were used to verify the model results. Flood hazard intensity and probability maps were obtained. Finally, an indicative danger map as defined within the Swiss hazard assessment terminology was calculated using the Swiss hazard matrix that convolves flood intensity with its recurrence probability in order to assign flood danger degrees to the concerned territory. Danger maps become effective, as risk mitigation tools, when implemented in urban planning. We focus on how local authorities are involved in the risk management process and how knowledge about risk impacts the management. An institutional vulnerability "map" was established based on individual interviews held with the main institutional actors in flood management. Results show that flood hazard management is defined by uneven actions and relationships, it is based on top-down decision-making patterns, and focus is maintained on active mitigation measures. The institutional actors embody sectorial, often disconnected risk knowledge pools, whose relationships are dictated by the institutional hierarchy. Results show that innovation in the risk management process emerges when actors collaborate despite the established hierarchy or when they open to outer knowledge pools (e.g. the academia). Several methodological and institutional recommendations were addressed to risk management stakeholders in view of potential map implementation to planning. Hazard assessment and mapping is essential to an integrated risk management approach: more than a mitigation tool, danger maps represent tools that allow communicating on hazards and establishing a risk culture.
Resumo:
This paper presents a method based on a geographical information system (GIS) to model ecological networks in a fragmented landscape. The ecological networks are generated with the help of a landscape model (which integrate human activities) and with a wildlife dispersal model. The main results are maps which permit the analysis and the understanding of the impact of human activities on wildlife dispersal. Three applications in a study area are presented: ecological networks at the landscape scale, conflicting areas at the farmstead scale and ecological distance between biotopes. These applications show the flexibility of the model and its potential to give information on ecological networks at different planning scales.
Resumo:
Geographical Information Systems (GIS) facilitate access to epidemiological data through visualization and may be consulted for the development of mathematical models and analysis by spatial statistics. Variables such as land-cover, land-use, elevations, surface temperatures, rainfall etc. emanating from earth-observing satellites, complement GIS as this information allows the analysis of disease distribution based on environmental characteristics. The strength of this approach issues from the specific environmental requirements of those causative infectious agents, which depend on intermediate hosts for their transmission. The distribution of these diseases is restricted, both by the environmental requirements of their intermediate hosts/vectors and by the ambient temperature inside these hosts, which effectively govern the speed of maturation of the parasite. This paper discusses the current capabilities with regard to satellite data collection in terms of resolution (spatial, temporal and spectral) of the sensor instruments on board drawing attention to the utility of computer-based models of the Earth for epidemiological research. Virtual globes, available from Google and other commercial firms, are superior to conventional maps as they do not only show geographical and man-made features, but also allow instant import of data-sets of specific interest, e.g. environmental parameters, demographic information etc., from the Internet.
Resumo:
Nowadays, when a user is planning a touristic route is very difficult to find out which are the best places to visit. The user has to choose considering his/her preferences due to the great quantity of information it is possible to find in the web and taking into account it is necessary to do a selection, within small time because there is a limited time to do a trip. In Itiner@ project, we aim to implement Semantic Web technology combined with Geographic Information Systems in order to offer personalized touristic routes around a region based on user preferences and time situation. Using ontologies it is possible to link, structure, share data and obtain the result more suitable for user's preferences and actual situation with less time and more precisely than without ontologies. To achieve these objectives we propose a web page combining a GIS server and a touristic ontology. As a step further, we also study how to extend this technology on mobile devices due to the raising interest and technological progress of these devices and location-based services, which allows the user to have all the route information on the hand when he/she does a touristic trip. We design a little application in order to apply the combination of GIS and Semantic Web in a mobile device.
Resumo:
BACKGROUND: Communication in cancer care has become a major topic of interest. Since there is evidence that ineffective communication affects both patients and oncology clinicians (physicians and nurses), so-called communication skills trainings (CSTs) have been developed over the last decade. While these trainings have been demonstrated to be effective, there is an important heterogeneity with regard to implementation and with regard to evidence of different aspects of CST. METHODS: In order to review and discuss the scientific literature on CST in oncology and to formulate recommendations, the Swiss Cancer League has organised a consensus meeting with European opinion leaders and experts in the field of CST, as well as oncology clinicians, representatives of oncology societies and patient organisations. On the basis of a systematic review and a meta-analysis, recommendations have been developed and agreed upon. RESULTS: Recommendations address (i) the setting, objectives and participants of CST, (ii) its content and pedagogic tools, (iii) organisational aspects, (iv) outcome and (v) future directions and research. CONCLUSION: This consensus meeting, on the basis of European expert opinions and a systematic review and meta-analysis, defines key elements for the current provision and future development and evaluation of CST in oncology.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
This guide was created to aid communities in the process of smart planning and is organized around the 10 Smart Planning Principles signed into Iowa law in 2010. A general description of the concept, strategies for encouraging use, policy tools for implementation, and a current Iowa example are presented for each Principle. In addition, a brief list of resources is provided to help local governments, community organizations and citizen planners find information and ideas on community involvement and incorporation of smart planning concepts in every day decisions.
Resumo:
Summary
Resumo:
This report is on state-of-the-art research efforts specific to infrastructure inventory/data collection with sign inventory as a case study. The development of an agency-wide sign inventory is based on feature inventory and location information. Specific to location, a quick and simple location acquisition tool is critical to tying assets to an accurate location-referencing system. This research effort provides a contrast between legacy referencing systems (route and milepost) and global positioning system- (GPS-) based techniques (latitude and longitude) integrated into a geographic information system (GIS) database. A summary comparison of field accuracies using a variety of consumer grade devices is also provided. This research, and the data collection tools developed, are critical in supporting the Iowa Department of Transportation (DOT) Statewide Sign Management System development effort. For the last two years, a Task Force has embarked on a comprehensive effort to develop a sign management system to improve sign quality, as well as to manage all aspects of signage, from request, ordering, fabricating, installing, maintaining, and ultimately removing, and to provide the ability to budget for these key assets on a statewide basis. This effort supported the development of a sign inventory tool and is the beginning of the development of a sign management system to support the Iowa DOT efforts in the consistent, cost effective, and objective decision making process when it comes to signs and their maintenance.
Resumo:
In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.
Resumo:
For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.