953 resultados para GILTHEAD SEA BREAM
Resumo:
The Fuerteventura Jurassic sedimentary succession consists of oceanic and elastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post-late Pliensbachian), We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian-Bajocian) and of elastic deposits reflecting tectono-eustatic events (e.g,, late Toarcian to mid-Callovian erosion of the rift shoulder). The S-l sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian-Oxfordian red clays, Aptian-Albian black shales) alternating with elastic deposits (e.g., Kimmeridgian-Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
This chapter presents the state of the art concerning the deep-sea Mediterranean environment: geology, hydrology, biology and fisheries. These are the fields of study dealt with in the scientific papers of this volume. The authors are specialists who have addressed their research to the Mediterranean deep-sea environment during the last years. This introduction is an overview but not an exhaustive review.
Resumo:
We compared specimens of Tripterygion tripteronotus from 52 localities of the Mediterranean Sea and adjacent waters, using four gene sequences (12S rRNA, tRNA-valine, 16S rRNA and COI) and morphological characters. Two well-differentiated clades with a mean genetic divergence of 6.89±0.73% were found with molecular data, indicating the existence of two different species. These two species have disjunctive geographic distribution areas without any molecular hybrid populations. Subtle but diagnostic morphological differences were also present between the two species. T. tripteronotus is restricted to the northern Mediterranean basin, from the NE coast of Spain to Greece and Turkey, including the islands of Malta and Cyprus. T. tartessicum n. sp. is geographically distributed along the southern coast of Spain, from Cape of La Nao to the Gulf of Cadiz, the Balearic Islands and northern Africa, from Morocco to Tunisia. According to molecular data, these two species could have diverged during the Pliocene glaciations 2.7-3.6 Mya.
Resumo:
The purpose of this review and analysis is to provide a basic understanding of the issues related to worldwide hypoxic zones and the range of economic questions sorely in need of answers. We begin by describing the causes and extent of hypoxic zones worldwide, followed by a review of the evidence concerning ecological effects of the condition and impacts on ecosystem services. We describe what is known about abatement options and cost effective policy design before turning to an analysis of the large, seasonally recurring hypoxic zone in the Gulf of Mexico. We advance the understanding of this major ecological issue by estimating the relationship between pollutants (nutrients) and the areal extent of the hypoxic zone. This “production function” relationship suggests that both instantaneous and legacy contributions of nutrients contribute to annual predictions of the size of the zone, highlighting concerns that ecologists have raised about lags in the recovery of the system and affirms the importance of multiple nutrients as target pollutants. We conclude with a discussion of critical research needs to provide input to policy formation.
Resumo:
During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.
Resumo:
In West Timer, Triassic deposits are found in the Parautochthonous Complex, as well as in the Allochthonous series of Sonnebait. A detailed biostratigraphic investigation integrating field observations and facies analysis, allowed the reconstruction of a synthetic lithostratigraphic succession for the Upper Triassic, a stratigraphic transition from Carnian shales to Upper Norian-Rhaetian limestones is also shown by this study. The fossil content predominantly originates from an open marine environment; lithostratigraphic Units A-E are dated on the basis of radiolaria and palynomorphs, and Unit H, on ammonites and conodonts. The presence of pelagic bioclasts, together with normal grading, horizontal laminations, and current ripples, is indicative of a distal slope to basin environment. The ammonite rich condensed limestone of Unit H was deposited on a `pelagic carbonate plateau' exposed to storms and currents. The organic facies have been used as criteria for biostratigraphy, palaeoenvironmental interpretation, and sequence stratigraphy. The palaeontological analysis of the Triassic succession of West Timer is based on the investigation of radiolaria and palynomorphs, in the marls and limestones of Units A-E, and also on ammonites and conodonts in the condensed limestone of Unit H. Units A and B are Carnian (Cordevolian) in age, based on the occurrence of the palynomorph Camerosporites secatus, associated with `Lueckisporites' cf. singhii, Vallasporites ignacii, Patinosporites densus and Partitisporites novimundanus. Unit C is considered as Norian, on the basis of a relatively high percentage of Gliscopollis meyeriana and Granuloperculatipollis rudis. Unit D contains significant palynomorphs and radiolaria; the organic facies, characterized by marine elements, is dominated by the Norian dinocysts Heibergella salebrosacea and Heibergella aculeata; the radiolaria confirm the Norian age. They range from the lowermost Norian to the lower Upper Norian. Unit E also contains radiolaria, associated in the upper part with the well-known marker of the Upper Norian, Monotis salinaria. For Unit E, the radiolaria attest to a Lower to Upper Norian age based on the occurrence of Capnodoce and abundant Capnuchosphaera; the upper part is Upper Norian to Rhaetian based on the presence of Livarella valida. Finally, the blocks of condensed limestone with ammonites and conodonts of Unit H allowed the reconstruction of a synthetic stratigraphic succession of Upper Carnian to Upper Norian age. Our stratigraphic data lead to the suggestion that the Allochthonous complex, classically interpreted as a tectonic melange of the accretionary prism of the island Arc of Banda. is a tectonically dismembered part of a Triassic lithostratigraphic succession. (C) 2000 Elsevier Science B.V. All rights reserved.