989 resultados para GENETIC EVALUATION
Resumo:
Discussion on improving the power of genome-wide association studies to identify candidate variants and genes is generally centered on issues of maximizing sample size; less attention is given to the role of phenotype definition and ascertainment. The authors used genome-wide data from patients infected with human immunodeficiency virus type 1 (HIV-1) to assess whether differences in type of population (622 seroconverters vs. 636 seroprevalent subjects) or the number of measurements available for defining the phenotype resulted in differences in the effect sizes of associations between single nucleotide polymorphisms and the phenotype, HIV-1 viral load at set point. The effect estimate for the top 100 single nucleotide polymorphisms was 0.092 (95% confidence interval: 0.074, 0.110) log(10) viral load (log(10) copies of HIV-1 per mL of blood) greater in seroconverters than in seroprevalent subjects. The difference was even larger when the authors focused on chromosome 6 variants (0.153 log(10) viral load) or on variants that achieved genome-wide significance (0.232 log(10) viral load). The estimates of the genetic effects tended to be slightly larger when more viral load measurements were available, particularly among seroconverters and for variants that achieved genome-wide significance. Differences in phenotype definition and ascertainment may affect the estimated magnitude of genetic effects and should be considered in optimizing power for discovering new associations.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
ABSTRACT: BACKGROUND: The Psychiatric arm of the population-based CoLaus study (PsyCoLaus) is designed to: 1) establish the prevalence of threshold and subthreshold psychiatric syndromes in the 35 to 66 year-old population of the city of Lausanne (Switzerland); 2) test the validity of postulated definitions for subthreshold mood and anxiety syndromes; 3) determine the associations between psychiatric disorders, personality traits and cardiovascular diseases (CVD), 4) identify genetic variants that can modify the risk for psychiatric disorders and determine whether genetic risk factors are shared between psychiatric disorders and CVD. This paper presents the method as well as somatic and sociodemographic characteristics of the sample. METHODS: All 35 to 66 year-old persons previously selected for the population-based CoLaus survey on risk factors for CVD were asked to participate in a substudy assessing psychiatric conditions. This investigation included the Diagnostic Interview for Genetic Studies to elicit diagnostic criteria for threshold disorders according to DSM-IV and algorithmically defined subthreshold syndromes. Complementary information was gathered on potential risk and protective factors for psychiatric disorders, migraine and on the morbidity of first-degree family members, whereas the collection of DNA and plasma samples was part of the original somatic study (CoLaus). RESULTS: A total of 3,691 individuals completed the psychiatric evaluation (67% participation). The gender distribution of the sample did not differ significantly from that of the general population in the same age range. Although the youngest 5-year band of the cohort was underrepresented and the oldest 5-year band overrepresented, participants of PsyCoLaus and individuals who refused to participate revealed comparable scores on the General Health Questionnaire, a self-rating instrument completed at the somatic exam. CONCLUSIONS: Despite limitations resulting from the relatively low participation in the context of a comprehensive and time-consuming investigation, the PsyCoLaus study should significantly contribute to the current understanding of psychiatric disorders and comorbid somatic conditions by: 1) establishing the clinical relevance of specific psychiatric syndromes below the DSM-IV threshold; 2) determining comorbidity between risk factors for CVD and psychiatric disorders; 3) assessing genetic variants associated with common psychiatric disorders and 4) identifying DNA markers shared between CVD and psychiatric disorders.
Resumo:
STUDY OBJECTIVES: Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. DESIGN: EEG/EMG and piezo signals were recorded simultaneously during 48 h. SETTING: Mouse sleep laboratory. PARTICIPANTS: Nine male and nine female CFW outbred mice. INTERVENTIONS: EEG/EMG surgery. MEASUREMENTS AND RESULTS: The results showed a high correspondence between EEG/EMG-determined and piezo-determined total sleep time and the distribution of sleep over a 48-h baseline recording with 18 mice. Moreover, the piezo system was capable of assessing sleep quality (i.e., sleep consolidation) and interesting observations at transitions to and from rapid eye movement sleep were made that could be exploited in the future to also distinguish the two sleep states. CONCLUSIONS: The piezo system proved to be a reliable alternative to electroencephalogram/electromyogram recording in the mouse and will be useful for first-pass, large-scale sleep screens for genetic or pharmacological studies. CITATION: Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/electromyogram recordings in mouse sleep studies.
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations (
or = 0.081). The inbreeding values within (
= -0.555) and among populations (
=-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow (
m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
STUDY DESIGN: Case-control study. OBJECTIVES: To assess serum myostatin levels, bone mineral density (BMD), appendicular skeletal muscle mass (ASMM) and serum sclerostin levels in chronic spinal cord injured (SCI) patients and healthy controls. SETTING: SCI centre in Italy. METHODS: Blood samples, whole-body bioelectrical impedance analysis and BMD measurement with the ultrasound technique at the calcaneus level were taken from patients suffering from chronic SCI (both motor complete and incomplete) and healthy control subjects. RESULTS: A total of 28 SCI patients and 15 healthy controls were enrolled. Serum myostatin levels were statistically higher (P<0.01) in SCI patients compared with healthy controls. Similar results were found comparing both the motor complete and the motor incomplete SCI subgroups to healthy controls. Serum sclerostin was significantly higher in patients with SCI compared with healthy controls (P<0.01). BMD, stiffness and mean T-score values in SCI patients were significantly lower than those in healthy controls. Serum myostatin concentrations in the motor complete SCI subgroups correlated only with serum sclerostin levels (r(2)=0.42; P=0.001) and ASMM (r(2)=0.70; P=0.002) but not in healthy controls. DISCUSSION: Serum myostatin and serum sclerostin are significantly higher in chronic SCI patients compared with healthy controls. They are potential biomarkers of muscle and bone modifications after SCI. This is the first study reporting an increase in serum myostatin in patients suffering from chronic SCI and a correlation with ASMM.
Resumo:
The feasibility of using augmented block designs and spatial analysis methods for early stage selection in eucalyptus breeding programs was tested. A total of 113 half-sib progenies of Eucalyptus urophylla and eight clones were evaluated in an 11 x 11 triple lattice experiment at two locations: Posto da Mata (Bahia, Brazil) and São Mateus (Minas Gerais, Brazil). Four checks were randomly allocated within each block. Plots consisted of 15 m long rows containing 6 plants spaced 3 m apart. The girth at breast height (cm/plant) was evaluated at 19 and 26 months of age. Variance analyses were performed according to the following methods: lattice design, randomized complete block design, augmented block design, Papadakis method, moving means method, and check plots. Comparisons among different methods were based on the magnitude of experimental errors and precision of the estimates of genetic and phenotypic parameters. General results indicated that augmented block design is useful to evaluate progenies and clones in early selection in eucalyptus breeding programs using moderate and low selection intensities. However, this design is not suitable for estimating genetic and phenotypic parameters due to its low precision. Check plots, nearest neighbour, Papadakis (1937), and moving means methods were efficient in removing the heterogeneity within blocks. These efficiencies were compared to that in lattice analysis for estimation of genetic and phenotypic parameters.
Resumo:
This study aimed to evaluate the genetic variability among individuals of a base population of Eucalyptus grandis and to build a molecular marker database for the analyzed populations. The Eucalyptus grandis base population comprised 327 individuals from Coff's Harbour, Atherton and Rio Claro. A few plants came from other sites (Belthorpe MT. Pandanus, Kenilworth, Yabbra, etc.). Since this base population had a heterogeneous composition, the groups were divided according to geographic localization (latitude and longitude), and genetic breeding level. Thus, the influence of those two factors (geographic localization and genetic breeding level) on the genetic variability detected was discussed. The RAPD technique allowed the evaluation of 70 loci. The binary matrix was used to estimate the genetic similarity among individuals using Jaccard's Coefficient. Parametric statistical tests were used to compare within-group similarity of the means. The obtained results showed that the base population had wide genetic variability and a mean genetic similarity of 0.328. Sub-group 3 (wild materials from the Atherton region) showed mean genetic similarity of 0.318. S.P.A. (from Coff's Harbour region) had a mean genetic similarity of 0.322 and was found to be very important for maintenance of variation in the base population. This can be explained since the individuals from those groups accounted for most of the base population (48.3% for it). The base population plants with genetic similarity higher than 0.60 should be phenotypically analyzed again in order to clarify the tendency of genetic variability during breeding programs.
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Genetic and antigenic analysis of Babesia bigemina isolates from five geographical regions of Brazil
Resumo:
A molecular epidemiological study was performed with Babesia bigemina isolates from five geographical regions of Brazil. The genetic analysis was done with random amplification of polymorphic DNA (RAPD), repetitive extragenic palindromic elements-polymerase chain reaction (REP-PCR) and enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR) that showed genetic polymorphism between these isolates and generated fingerprinting. In RAPD, ILO872 and ILO876 primers were able to detect at least one fingerprinting for each B. bigemina isolate. The amplification of B. bigemina DNA fragments by REP-PCR and ERIC-PCR gave evidence for the presence in this haemoprotozoan of the sequences described previously in microorganisms of the bacterial kingdom. For the first time it was demonstrated that both techniques can be used for genetic analysis of a protozoan parasite, although the ERIC-PCR was more discriminatory than REP-PCR. The dendogram with similarity coefficient among isolates showed two clusters and one subcluster. The Northeastern and Mid-Western isolates showed the greatest genetic diversity, while the Southeastern and Southern isolates were the closest. The antigenic analysis was done through indirect fluorescent antibody technique and Western blotting using a panel of monoclonal antibodies directed against epitopes on the merozoite membrane surface, rhoptries and membrane of infected erythrocytes. As expected, the merozoite variable surface antigens, major surface antigen (MSA)-1 and MSA-2 showed antigenic diversity. However, B cell epitopes on rhoptries and infected erythrocytes were conserved among all isolates studied. In this study it was possible to identify variable and conserved antigens, which had already been described as potential immunogens. Considering that an attenuated Babesia clone used as immunogen selected populations capable of evading the immunity induced by this vaccine, it is necessary to evaluate more deeply the cross-protection conferred by genetically more distant Brazilian B. bigemina isolates and make an evaluation of the polymorphism degree of variable antigens such as MSA-1 and MSA-2.
Resumo:
Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of respiratory, reproductive disease and abortion in cattle. Vaccination is widely applied to minimize losses induced by BoHV-1 infections; however, vaccination of dams during pregnancy with modified live virus (MLV) vaccines has been occasionally associated to abortions. We have previously reported the development of a BoHV-1 recombinant virus, constructed with basis on a Brazilian BoHV-1 (Franco et al. 2002a) from which the gene coding for glycoprotein E (gE) was deleted (gE-) by genetic manipulation. Such recombinant has been previously evaluated in its potential as a differential vaccine (gE- vaccine) that allows differentiation between vaccinated and infected animals. Here, in the first part of the present study, the safety of the gE- vaccine during pregnancy was evaluated by the intramuscular inoculation of 10(7.4) tissue culture 50 % infective doses (TCID50) of the virus into 22 pregnant dams (14 BoHV-1 seronegative; 8 seropositive), at different stages of gestation. Other 15 pregnant dams were kept as non-vaccinated controls. No abortions, stillbirths or fetal abnormalities were seen after vaccination. Seroconversion was observed in both groups of previously seronegative vaccinated animals. In the second part of the study, the potential of the gE- vaccine virus to spread among beef cattle under field conditions was examined. Four heifers were inoculated intranasally with a larger amount (10(7,6) TCID50) of the gE- vaccine (to increase chances of transmission) and mixed with other sixteen animals at the same age and body condition, in the same grazing area, at a population density equal to the average cattle farming density within the region (one cattle head per 10,000 m²), for 180 days. All animals were monitored daily for clinical signs. Serum samples were collected on days 0, 30, 60 and 180 post-vaccination. Seroconversion was observed only in vaccinated heifers. These results indicate that, under the conditions of the present study, the gE- vaccine virus did not cause any noticeable harmful effect on pregnant dams and on its offspring and did not spread horizontally among cattle.
Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients
Resumo:
Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.
Resumo:
Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG-100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95%) of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85%) presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.