938 resultados para GASES
Resumo:
Objetivou-se, na condução deste trabalho, a avaliação das silagens de capim-elefante aditivadas com tortas de nabo forrageiro, pinhão manso e tremoço pela técnica de produção de gás. O experimento foi desenvolvido no Laboratório de Nutrição Animal do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (LANA/CENA/USP). Como doadores de líquido de rúmen, foram utilizados 2 ovinos da raça Santa Inês, machos, adultos, castrados e providos de cânula ruminal permanente. A alimentação dos animais doadores foi constituída de forragem de gramínea cultivada e uma suplementação, ao final do dia, com feno de Tifton, concentrado comercial e sal mineral à vontade. Os substratos foram secos a 60ºC, moídos em moinho do tipo Willey, provido de peneira com perfurações de 2 mm. Os gases produzidos durante os diferentes períodos de fermentação (0, 4, 8, 12, 24, 36, 48, 72 e 96 h) foram medidos com um transducer - medidor de pressão.O experimento foi instalado segundo um delineamento de blocos ao acaso em que os tratamentos foram arranjados em um esquema de parcelas subdivididas no tempo. Os maiores valores de produção de gás observados para os tratamentos em que adicionou-se torta de tremoço quando comparados com as outras tortas, decorreu do fato da torta de tremoço apresentar menor teor de fibras, propiciando assim, uma maior fermentação ruminal e, consequentemente, maior produção de gás em relação a outros alimentos com maior proporção de carboidratos estruturais (parede celular).As taxas de degradação da fração solúvel da matéria seca foi menor para NF 8% e PM 11% em relação às outras silagens estudadas. Foram encontradas diferenças significativas para as TNF, TPM e TT, nos diferentes níveis, em relação ao volume de gases em 96 h de incubação (P<0,05). As silagens contendo torta de tremoço apresentaram maior produção de gases quando comparadas Às outras tortas. em todos os tratamentos, exceto naqueles em que adicionou-se TT, houve diminuição (P<0,05) nos valores médios de degradabilidade da matéria seca às 96 horas, à medida que aumentou-se o nível de inclusão das tortas. As silagens de capim-elefante adicionadas de tortas de nabo forrageiro ou tremoço, nos diferentes níveis, apresentaram maiores taxas de degradação e maiores produções de gases que as adicionadas de torta de pinhão manso.
Resumo:
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The authors studied the effect of temperature and humidity of inhaled gases on the respiratory tract of dogs submitted to mechanic ventilation. According to these two variables, fourty dogs were divided in five groups: -G1: 22-26°C and 17-20 mg H2O.l-1; G2: 27-31°C and 23-27 mg H2O.l-1; G3: 32-36°C and 30-36 mg H2O.l-1; G4: 37-41°C and 40-49 mg H2O.l-1; G5: 42-46°C and 59-65 mg H2O.l-1. The following parameters were evaluated: medial arterial pressure, cardiac frequency, venous pressure of inferior cava (CVP), endotracheal pressure, arterial pH, PaO2, PaCO2, rectal temperature, and the histology of the tracheobronchial tree. In the groups G1 and G5, the endotracheal pressure and CVP presented a slight raise. In the groups G1, G2 and G3, there was no histological modification or progressive hypothermia. The group G5 presented metabolic acidosis and great histological alteration; in this group the rectal temperature remained stable. The group G4 presented great histological alteration and hypothermia. In conclusion, the temperature and humidity of inhaled gases should not be higher than 36°C and 36 mm H2O.l-1, respectively. However, the stability of body temperature only is achieved when the temperature of the inhaled air is 42°C or higher.
Resumo:
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Resumo:
Incluye bibliografía
Resumo:
In this work we developed a setup to measure the speed of sound in gases using a laser ultrasonics system. The mentioned setup is an all optical system composed by a Q-switched Nd:YAG laser to generate the sound waves, and a fiber optical microphone to detect them. The Nd:YAG provided a laser pulse of approximately 420 mJ energy and 9 ns of pulse width, at the wavelength of 1064 nm. The pulsed laser beam, focused by a positive lens, was used to generate an electrical breakdown (in the gas) which, in turn, generates an sound wave that traveled through a determined distance and reached the fiber optical microphone. The resulting signal was acquired in an oscilloscope and the time difference between the optical pulse and the arrival of the sound waves was used to calculate the speed of sound, since the distance was known. The system was initially tested to measure the speed of sound in air, at room pressure and temperature and it presented results in agreement with the theory, showing to be suitable to measure the speed of sound in gases. © 2012 American Institute of Physics.
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Trapped degenerate dipolar Bose and Fermi gases of the cylindrical symmetry with the polarization vector along the symmetry axis are only stable for the strength of dipolar interaction below a critical value. In the case of bosons, the stability of such a dipolar Bose-Einstein condensate (BEC) is investigated for different strengths of contact and dipolar interactions using a variational approximation and a numerical solution of a mean-field model. In the disc shape, with the polarization vector perpendicular to the plane of the disc, the atoms experience an overall dipolar repulsion and this fact should contribute to the stability. However, a complete numerical solution of the dynamics leads to the collapse of a strongly disc-shaped dipolar BEC due to the long-range anisotropic dipolar interaction. In the case of fermions, the stability of a trapped single-component degenerate dipolar Fermi gas is studied including the Hartree-Fock exchange and Brueckner-Goldstone correlation energies in the local-density approximation valid for a large number of atoms. Estimates for the maximum allowed number of polar Bose and Fermi molecules in the BEC and degenerate Fermi gas are given. © 2013 IOP Publishing Ltd.
Resumo:
Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Incluye Bibliografía
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)