995 resultados para G5831.P1 1849 .F7
Resumo:
Signatur des Originals: S 36/G01532
Resumo:
Signatur des Originals: S 36/G01580
Resumo:
Signatur des Originals: S 36/G03389
Resumo:
Ludwig Leszczynski
Resumo:
The human glutathione S-transferase P1 (GSTP1) protein is an endogenous inhibitor of c-jun N-terminal kinases (JNKs) and an important phase II detoxification enzyme. ^ Recent identification of a cAMP response element (CRE) in the 5 ′-region of the human GSTP1 gene and several putative phosphorylation sites for the Ser/Thr protein kinases, including, cAMP-dependent protein kinases (PKAs), protein kinases C (PKCs), and JNKs in the GSTP1 protein raised the possibility that signaling pathways may play an important role in the transcriptional and post-translational regulation of GSTP1 gene. This study examined (a) whether the signaling pathway mediated by CAMP, via the GSTP1 CRE, is involved in the transcriptional regulation of the GSTP1 gene, (b) whether signaling pathways mediated by the Ser/Thr protein kinases (PKAs, PKCs, and JNKs) induce post-translational modification, viz. phosphorylation of the GSTP1 protein, and (c) whether such phosphorylation of the GSTP1 protein alters its functions in metabolism and in JNK signaling. ^ The first major finding in this study is the establishment of the human GSTP1 gene as a novel CAMP responsive gene in which transcription is activated via an interaction between PKA activated CRE binding protein-1 (CREB-1) and the CRE in the 5′-regulatory region. ^ The second major finding in this study is the observation that the GSTP1 protein undergoes phosphorylation and functionally activated by second messenger-activated protein kinases, PKA and PKC, in tumor cells with activated signaling pathways. Following phosphorylation by PKA or PKC, the catalytic activity of the GSTP1 protein was significantly enhanced, as indicated by a decrease in its Km (2- to 3.6-fold) and an increase in Kcat/ Km (1.6- to 2.5-fold) for glutathione. Given the frequent over-expression of GSTP1 and the aberrant PKA/PKC signaling cascade observed in tumors, these findings suggest that phosphorylation of GSTP1 may contribute to the malignant progression and drug-resistant phenotype of these tumors. ^ The third major finding in this study is that the GSTP1 protein, an inhibitor of JNKs, undergoes significant phosphorylation in tumor cells with activated JNK signaling pathway and in those under oxidative stress. Following phosphorylation by JNK, the ability of GSTP1 to inhibit JNK downstream function, i.e. c-jun phosphorylation, was significantly enhanced, suggesting a feedback mechanism of regulation of JNK-mediated cellular signaling. (Abstract shortened by UMI.) ^
Resumo:
The hypothesis addressed in this project was that novel variants of naturally occurring human glutathione S-transferase P1 (GSTP1) can be created by random mutagenesis of the GSTP1 active site to yield polypeptides with increased enzymatic activity against electrophilic substrates. Specifically, the mutant proteins would metabolize and inactivate selected electrophiles more efficiently than wild-type GSTP1 and confer significant cytoprotection, as measured by reduced apoptosis and increased clonogenic survival. Glutathione S-transferase P1, a major electrophile metabolizing and detoxifying enzyme, is encoded by a polymorphic genetic locus. This locus contains nucleotide transitions in the region encoding the active site of the peptide that yields proteins with significant structural and functional differences. The method of Degenerate Oligonucleotide Mediated Random Mutagenesis (DOMRM) was used to generate cDNAs encoding unique GSTP1 polypeptides with mutations within electrophile binding site (H-site) while leaving the glutathione binding site unaffected. A prokaryotic expression library of the mutant GSTP1 polypeptides was created and screened for increased resistance to cisplatin. This screen resulted in the isolation of 96 clones representing 22 distinct mutant cDNA sequences. To investigate the effects of the changes in the H-site on the biological activity of GSTP1, the cDNA of wild-type GSTP1c and two of the identified mutants were stably transfected into human LNCaP-Pro5 prostate cancer cells that do not endogenously express GSTP1. Wild-type transfectants were resistant to doxorubicin-induced apoptosis and displayed increased clonogenic survival compared to vector controls. However, contrary to the hypothesis, in both assays the mutant transfectants were no more resistant to doxorubicin than the wild-type transfectants. To elucidate the mechanisms underlying GSTP1-mediated survival, an in-vitro assay was developed to determine whether active GSTP1 protein directly metabolizes doxorubicin by conjugation to reduced glutathione (GSH). Although GSH did promote the appearance of a unique doxorubicin conjugate, conjugate formation was not substantially increased by the addition of GSTP1 in a variety of reaction conditions. ^
Resumo:
Fil: Roig, Arturo Andrés.