970 resultados para Günther, of Schwarzburg, 1304-1349.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies are are very important materials for diagnostics. A rapid and simple hybridoma screening method will help in delivering specific monoclonal antibodies. In this study, we systematically developed the first antibody array to screen for bacteria-specific monoclonal antibodies using Listeria monocytogenes as a bacteria model. The antibody array was developed to expedite the hybridoma screening process by printing hybridoma supernatants on a glass slide coated with an antigen of interest. This screening method is based on the binding ability of supernatants to the coated antigen. The bound supernatants were detected by a fluorescently labeled anti-mouse immunoglobulin. Conditions (slide types, coating, spotting, and blocking buffers) for antibody array construction were optimized. To demonstrate its usefulness, antibody array was used to screen a sample set of 96 hybridoma supernatants in comparison to ELISA. Most of the positive results identified by ELISA and antibody array methods were in agreement except for those with low signals that were undetectable by antibody array. Hybridoma supernatants were further characterized with surface plasmon resonance to obtain additional data on the characteristics of each selected clone. While the antibody array was slightly less sensitive than ELISA, a much faster and lower cost procedure to screen clones against multiple antigens has been demonstrated. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characterization of thick (9 mum), clear, mechanically robust and photocatalytically active films of nanocrystalline anatase titania are described. XRD and SEM analysis show the films comprise 13 nm particles of anatase TiO2. Thin (54 nm) films of the 'paste' TiO2, along with sol-gel titania films made by a more traditional route are also prepared and characterised. All titania films mediate the photocatalytic destruction of stearic acid with a quantum yield of 0.0016 +/- 0.0003. using either 365 nm (i.e. BLB) or 254 nm (germicidal) light. P25 TiO2 films also appear to mediate the same process with a similar formal quantum efficiency. Of all the films tested, the thick paste TiO2 films are the most ideally suited for use with near UV light, for reasons which are discussed. All the titania films tested exhibit photoinduced superhydrophilicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avermectins are frequently used to control parasitic infestations in many animal species. Previous studies have shown the long-term persistence of unwanted residues of these drugs in animal tissues and fluids. An immunoassay screening test for the detection acid quantification of ivermectin residues in bovine milk has been developed. After an extensive extraction procedure, milk samples were applied to a competitive dissociation-enhanced lanthanide fluoroimmunoassay using a monoclonal antibody against an ivermectin-transferrin conjugate, The monoclonal antibody, raised in Balb C mice, showed cross-reactivity with eprinomectin (92%), abamectin (82%) and doramectin (16%). The limit of detection of the assay (mean + 3 SD), calculated from the analysis of 17 known negative samples, was calculated as 4.6 ng/mL. Intra- and inter-assay RSDs were determined as 11.6% and 15.8%, respectively, using a negative bovine milk sample fortified with 25 ng/mL ivermectin. Six Friesian milking cows were treated with ivermectin, three with a pour-on formulation of the drug and three with an injectable solution at the manufacturer's recommended dose rate. An initial mean peak in ivermectin residue concentration was detected at day 4 (mean level = 47.5 ng/mL) and day 5 post-treatment (mean level = 26.4 ng/mL) with the injectable form and pour-on treatment, respectively. A second peak in residue concentration was observed using the DELFIA(R) procedure 28 days post-treatment in both treatment groups (23.1 ng/mL injectable and 51.9 ng/mL pour-on). These second peaks were not confirmed by HPLC and must at this Lime be considered to be false-positive results. By day 35 after treatment the mean ivermectin residue concentration of both groups fell below the limit of detection of the assay. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IQGAP [IQ-motif-containing GAP (GTPase-activating protein)] family members are eukaryotic proteins that act at the interface between cellular signalling and the cytoskeleton. As such they collect numerous inputs from a variety of signalling pathways. A key binding partner is the calcium-sensing protein CaM (calmodulin). This protein binds mainly through a series of IQ-motifs which are located towards the middle of the primary sequence of the IQGAPs. In some IQGAPs, these motifs also provide binding sites for CaM-like proteins such as myosin essential light chain and S100B. Using synthetic peptides and native gel electrophoresis, the binding properties of the IQ-motifs from human IQGAP2 and IQGAP3 have been mapped. The second and third IQ-motifs in IQGAP2 and all four of the IQ-motifs of IQGAP3 interacted with CaM in the presence of calcium ions. However, there were differences in the type of interaction: while some IQ-motifs were able to form complexes with CaM which were stable under the conditions of the experiment, others formed more transient interactions. The first IQ-motifs from IQGAP2 and IQGAP3 formed transient interactions with CaM in the absence of calcium and the first motif from IQGAP3 formed a transient interaction with the myosin essential light chain MIc1sa. None of these IQ-motifs interacted with S100B. Molecular modelling suggested that all of the IQ-motifs, except the first one from IQGAP2 formed alpha-helices in solution. These results extend our knowledge of the selectivity of IQ-motifs for CaM and related proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have shown that the effectiveness of radiations of varying LET is similar when yields of dsb have been measured, despite large differences in biological response. Recent evidence has suggested however, that current techniques underestimate the yields of dsb. By monitoring the fragmentation of DNA over a wide range of fragment sizes ( 6 Mbp) by pulsed field electrophoresis, RBE values greater than 1.0 for radiations of around 100 keV/mm have been determined. The data provide evidence for the production of correlated breaks produced within cells as particle tracks traverse the nucleus. The highly ordered structure of DNA within mammalian cells may lead to clustering of breaks over distances related to the repeating unit structures of the chromatin. As well as these regionally damaged sites, a major contributor to radiation effectiveness will be the localised clustering of damage in the 1 - 20 bp region. A major effort is required to elucidate the relative importance of these levels of clustering and their importance in biological response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm(3) mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm(3) mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs. (C) 1999 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RBE of alpha -particles in different mutations of Chinese hamster cells was determined with the aim of identifying differences in the sensitivity to x-ray and alpha -particle-induced DNA damage. Two parental lines of Chinese hamster cells and four radiosensitive mutants were irradiated with different single doses of x-rays and alpha -particles and clonogenic cell survival was determined. Radiosensitivity to x-rays varied by a factor of 5 between the cell strains whereas sensitivity to alpha -particle irradiation was almost identical among all strains. The RBE is only determined by the sensitivity of the cells towards x-rays. Since cells with different defects of repair or cell cycle control have different radiosensitivities, we conclude that the effects of x-ray irradiation and the RBE are mostly determined by the activity of repair processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underpinning current models of the mechanisms of the action of radiation is a central role for DNA damage and in particular double-strand breaks (DSBs). For radiations of different LET, there is a need to know the exact yields and distributions of DSBs in human cells. Most measurements of DSB yields within cells now rely on pulsed-field gel electrophoresis as the technique of choice. Previous measurements of DSB yields have suggested that the yields are remarkably similar for different types of radiation with RBE values less than or equal to1.0. More recent studies in mammalian cells, however, have suggested that both the yield and the spatial distribution of DSBs are influenced by radiation quality. RBE values for DSBs induced by high-LET radiations are greater than 1.0, and the distributions are nonrandom. Underlying this is the interaction of particle tracks with the higher-order chromosomal structures within cell nuclei. Further studies are needed to relate nonrandom distributions of DSBs to their rejoining kinetics. At the molecular level, we need to determine the involvement of clustering of damaged bases with strand breakage, and the relationship between higher-order clustering over sizes of kilobase pairs and above to localized clustering at the DNA level. Overall, these studies will allow us to elucidate whether the nonrandom distributions of breaks produced by high-LET particle tracks have any consequences for their repair and biological effectiveness. (C) 2001 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In studies of radiation-induced DNA fragmentation and repair, analytical models may provide rapid and easy-to-use methods to test simple hypotheses regarding the breakage and rejoining mechanisms involved. The random breakage model, according to which lesions are distributed uniformly and independently of each other along the DNA, has been the model most used to describe spatial distribution of radiation-induced DNA damage. Recently several mechanistic approaches have been proposed that model clustered damage to DNA. In general, such approaches focus on the study of initial radiation-induced DNA damage and repair, without considering the effects of additional (unwanted and unavoidable) fragmentation that may take place during the experimental procedures. While most approaches, including measurement of total DNA mass below a specified value, allow for the occurrence of background experimental damage by means of simple subtractive procedures, a more detailed analysis of DNA fragmentation necessitates a more accurate treatment. We have developed a new, relatively simple model of DNA breakage and the resulting rejoining kinetics of broken fragments. Initial radiation-induced DNA damage is simulated using a clustered breakage approach, with three free parameters: the number of independently located clusters, each containing several DNA double-strand breaks (DSBs), the average number of DSBs within a cluster (multiplicity of the cluster), and the maximum allowed radius within which DSBs belonging to the same cluster are distributed. Random breakage is simulated as a special case of the DSB clustering procedure. When the model is applied to the analysis of DNA fragmentation as measured with pulsed-field gel electrophoresis (PFGE), the hypothesis that DSBs in proximity rejoin at a different rate from that of sparse isolated breaks can be tested, since the kinetics of rejoining of fragments of varying size may be followed by means of computer simulations. The problem of how to account for background damage from experimental handling is also carefully considered. We have shown that the conventional procedure of subtracting the background damage from the experimental data may lead to erroneous conclusions during the analysis of both initial fragmentation and DSB rejoining. Despite its relative simplicity, the method presented allows both the quantitative and qualitative description of radiation-induced DNA fragmentation and subsequent rejoining of double-stranded DNA fragments. (C) 2004 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homeobox gene expression was examined in the erythroleukaemic cell line TF-1. Expression of a number of HOX A, B and C genes, including HOX A7 was detected. Expression of this gene has not previously been reported in erythroleukaemic cell lines. A 2.1 kb full length cDNA of the HOX A7 gene was cloned. The predicted amino acid sequence C-terminal to the homeodomain consists of an alanine-rich region and a strongly negatively charged domain consisting entirely of aspartic and glutamic acid residues.