906 resultados para Full compensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Diabetic foot ulcers (DFUs) represent a major clinical challenge in the ageing population. To address this problem, rhEGF-loaded Poly-Lactic-co-Glycolic-Acid (PLGA)-Alginate microspheres (MS) were prepared by a modified w/o/w-doubleemulsion/ solvent evaporation method. Different formulations were evaluated with the aim of optimising MSs properties by adding NaCl to the surfactant solution and/or the solvent removal phase and adding alginate as a second polymer. The characterization of the developed MS showed that alginate incorporation increased the encapsulation efficiency (EE) and NaCl besides increasing the EE also became the particle surface smooth and regular. Once the MS were optimised, the target loading of rhEGF was increased to 1% (PLGA-Alginate MS), and particles were sterilised by gamma radiation to provide the correct dosage for in vivo studies. In vitro cell culture assays demonstrated that neither the microencapsulation nor the sterilisation process affected rhEGF bioactivity or rhEGF wound contraction. Finally, the MS were evaluated in vivo for treatment of the full-thickness wound model in diabetised Wistar rats. rhEGF MS treated animals showed a statistically significant decrease of the wound area by days 7 and 11, a complete re-epithelisation by day 11 and an earlier resolution of the inflammatory process. Overall, these findings demonstrate the promising potential of rhEGF-loaded MS (PLGA-Alginate MS) to promote faster and more effective wound healing, and suggest its possible application in DFU treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo consiste en el diseño y estudio de la suspensión por bieletas Full Floater para una moto de competición para el equipo Moto Student Bilbao. En este estudio, se busca la curva de rigidez optima para la suspensión y se diseñan mediante elementos finitos los elementos de los que se compone: triánngulo de suspensión, bieleta y las uniones entre elementos. [El muelle - amortiguador es un elemento suministrado por la organización]. A su vez, se realiza un diseño preliminar del basculante, donde se estudia este a rigidez y a resistencia. Por último, se nombra el posible proceso de fabricación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the gamma-gamma probability distribution is used to model turbulent channels. The bit error rate (BER) performance of free space optical (FSO) communication systems employing on-off keying (OOK) or subcarrier binary phase-shift keying (BPSK) modulation format is derived. A tip-tilt adaptive optics system is also incorporated with a FSO system using the above modulation formats. The tip-tilt compensation can alleviate effects of atmospheric turbulence and thereby improve the BER performance. The improvement is different for different turbulence strengths and modulation formats. In addition, the BER performance of communication systems employing subcarrier BPSK modulation is much better than that of compatible systems employing OOK modulation with or without tip-tilt compensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an optical parametric chirped pulse amplification (OPCPA) laser system, residual phase dispersion should be compensated as much as possible to shorten the amplified pulses and improve the pulse contrast ratio. Expressions of orders of the induced phases in collinear optical parametric amplification (OPA) processes are presented at the central signal wavelength to depict a clear physics picture and to simplify the design of phase compensation. As examples, we simulate two OPCPA systems to compensate for the phases up to the partial fourth-order terms, and obtain flat phase spectra of 200-nm bandwidth at 1064 nm and 90-nm at 800 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.