912 resultados para Frequency domain measurement
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.
Resumo:
In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.
Resumo:
Pre-whitening techniques are employed in blind correlation detection of additive spread spectrum watermarks in audio signals to reduce the host signal interference. A direct deterministic whitening (DDW) scheme is derived in this paper from the frequency domain analysis of the time domain correlation process. Our experimental studies reveal that, the Savitzky-Golay Whitening (SGW), which is otherwise inferior to DDW technique, performs better when the audio signal is predominantly lowpass. The novelty of this paper lies in exploiting the complementary nature to the two whitening techniques to obtain a hybrid whitening (HbW) scheme. In the hybrid scheme the DDW and SGW techniques are selectively applied, based on short time spectral characteristics of the audio signal. The hybrid scheme extends the reliability of watermark detection to a wider range of audio signals.
Resumo:
A technique is proposed for classifying respiratory volume waveforms(RVW) into normal and abnormal categories of respiratory pathways. The proposed method transforms the temporal sequence into frequency domain by using an orthogonal transform, namely discrete cosine transform (DCT) and the transformed signal is pole-zero modelled. A Bayes classifier using model pole angles as the feature vector performed satisfactorily when a limited number of RVWs recorded under deep and rapid (DR) manoeuvre are classified.
Resumo:
Frequency-domain scheduling and rate adaptation enable next generation wireless cellular systems such as Long Term Evolution (LTE) to achieve significantly higher downlink throughput. LTE assigns subcarriers in chunks, called physical resource blocks (PRBs), to users to reduce control signaling overhead. To reduce the enormous feedback overhead, the channel quality indicator (CQI) report that is used to feed back channel state information is averaged over a subband, which, in turn, is a group of multiple PRBs. In this paper, we develop closed-form expressions for the throughput achieved by the subband-level CQI feedback mechanism of LTE. We show that the coarse frequency resolution of the CQI incurs a significant loss in throughput and limits the multi-user gains achievable by the system. We then show that the performance can be improved by means of an offset mechanism that effectively makes the users more conservative in reporting their CQI.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
This paper presents simulation and experimental studies on the characterization of ultra wideband antennas for imaging applications. Various configurations of antennas were simulated for their time and frequency domain characteristics with special emphasis on flat responses for group delay and gain versus frequency. Parametric studies reported here showed that locating the capacitive feed strip near the vertex of the triangle gave better response in these respects. An antenna with operating frequency from 2.9GHz to 4.1GHz was fabricated and measured.
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
Orthogonal frequency-division multiple access (OFDMA) systems divide the available bandwidth into orthogonal subchannels and exploit multiuser diversity and frequency selectivity to achieve high spectral efficiencies. However, they require a significant amount of channel state feedback for scheduling and rate adaptation and are sensitive to feedback delays. We develop a comprehensive analysis for OFDMA system throughput in the presence of feedback delays as a function of the feedback scheme, frequency-domain scheduler, and rate adaptation rule. Also derived are expressions for the outage probability, which captures the inability of a subchannel to successfully carry data due to the feedback scheme or feedback delays. Our model encompasses the popular best-n and threshold-based feedback schemes and the greedy, proportional fair, and round-robin schedulers that cover a wide range of throughput versus fairness tradeoff. It helps quantify the different robustness of the schedulers to feedback overhead and delays. Even at low vehicular speeds, it shows that small feedback delays markedly degrade the throughput and increase the outage probability. Further, given the feedback delay, the throughput degradation depends primarily on the feedback overhead and not on the feedback scheme itself. We also show how to optimize the rate adaptation thresholds as a function of feedback delay.
Resumo:
In this work, the wave propagation analysis of built-up composite structures is performed using frequency domain spectral finite elements, to study the high frequency wave responses. The paper discusses basically two methods for modeling stiffened structures. In the first method, the concept of assembly of 2D spectral plate elements is used to model a built-up structure. In the second approach, spectral finite element method (SFEM) model is developed to model skin-stiffener structures, where the skin is considered as plate element and the stiffener as beam element. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also extended to model the stiffened structures with different cross sections such as T-section, I-section and hat section. A number of parametric studies are performed to capture the mode coupling, that is, the flexural-axial coupling present in the wave responses.
Resumo:
Micro- and nano-mechanical resonators have been proposed for a variety of applications ranging from mass sensing to signal processing. Often their actuation and/or detection involve external subsystems that are much larger than the resonator itself. We have designed a simple microcantilever resonator with integrated sensor and actuator, facilitating the integration of large arrays of resonators. This unique design can be manufactured with a low-cost fabrication process, involving just a single step of lithography. The bilayer cantilever of gold and silicon dioxide is used as piezoresistive sensor as well as thermal bimorph actuator. The ac current used for actuation and the dc current used for piezoresistive detection are separated in the frequency-domain using a bias-tee circuit configuration. The resonant response is measured by detecting the second harmonic of the actuation current using a lock-in amplifier.
Resumo:
A wave propagation based approach for the detection of damage in components of structures having periodic damage has been proposed. Periodic damage pattern may arise in a structure due to periodicity in geometry and in loading. The method exploits the Block-Floquet band formation mechanism, a feature specific to structures with periodicity, to identify propagation bands (pass bands) and attenuation bands (stop bands) at different frequency ranges. The presence of damage modifies the wave propagation behaviour forming these bands. With proper positioning of sensors a damage force indicator (DFI) method can be used to locate the defect at an accuracy level of sensor to sensor distance. A wide range of transducer frequency may be used to obtain further information about the shape and size of the damage. The methodology is demonstrated using a few 1-D structures with different kinds of periodicity and damage. For this purpose, dynamic stiffness matrix is formed for the periodic elements to obtain the dispersion relationship using frequency domain spectral element and spectral super element method. The sensitivity of the damage force indicator for different types of periodic damages is also analysed.
Resumo:
Orthogonal frequency division multiple access (OFDMA) systems exploit multiuser diversity and frequency-selectivity to achieve high spectral efficiencies. However, they require considerable feedback for scheduling and rate adaptation, and are sensitive to feedback delays. We develop a comprehensive analysis of the OFDMA system throughput as a function of the feedback scheme, frequency-domain scheduler, and discrete rate adaptation rule in the presence of feedback delays. We analyze the popular best-n and threshold-based feedback schemes. We show that for both the greedy and round-robin schedulers, the throughput degradation, given a feedback delay, depends primarily on the fraction of feedback reduced by the feedback scheme and not the feedback scheme itself. Even small feedback delays at low vehicular speeds are shown to significantly degrade the throughput. We also show that optimizing the link adaptation thresholds as a function of the feedback delay can effectively counteract the detrimental effect of delays.
Resumo:
In this paper, we propose a cooperative particle swarm optimization (CPSO) based channel estimation/equalization scheme for multiple-input multiple-output zero-padded single-carrier (MIMO-ZPSC) systems with large dimensions in frequency selective channels. We estimate the channel state information at the receiver in time domain using a PSO based algorithm during training phase. Using the estimated channel, we perform information symbol detection in the frequency domain using FFT based processing. For this detection, we use a low complexity OLA (OverLap Add) likelihood ascent search equalizer which uses minimum mean square (MMSE) equalizer solution as the initial solution. Multiple iterations between channel estimation and data detection are carried out which significantly improves the mean square error and bit error rate performance of the receiver.
Resumo:
In this paper, we consider the problem of finding a spectrum hole of a specified bandwidth in a given wide band of interest. We propose a new, simple and easily implementable sub-Nyquist sampling scheme for signal acquisition and a spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy in the frequency domain by testing a group of adjacent subbands in a single test. The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent sub-bands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes. We extend this framework to a multi-stage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including non-contiguous spectrum hole search. Further, we provide the analytical means to optimize the hypothesis tests with respect to the detection thresholds, number of samples and group size to minimize the detection delay under a given error rate constraint. Depending on the sparsity and SNR, the proposed algorithms can lead to significantly lower detection delays compared to a conventional bin-by-bin energy detection scheme; the latter is in fact a special case of the group test when the group size is set to 1. We validate our analytical results via Monte Carlo simulations.