953 resultados para Fractional derivatives
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.
Resumo:
Fractional calculus (FC) is no longer considered solely from a mathematical viewpoint, and is now applied in many emerging scientific areas, such as electricity, magnetism, mechanics, fluid dynamics, and medicine. In the field of dynamical systems, significant work has been carried out proving the importance of fractional order mathematical models. This article studies the electrical impedance of vegetables and fruits from a FC perspective. From this line of thought, several experiments are developed for measuring the impedance of botanical elements. The results are analyzed using Bode and polar diagrams, which lead to electrical circuit models revealing fractional-order behaviour.
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
The development of fractional-order controllers is currently one of the most promising fields of research. However, most of the work in this area addresses the case of linear systems. This paper reports on the analysis of fractional-order control of nonlinear systems. The performance of discrete fractional-order PID controllers in the presence of several nonlinearities is discussed. Some results are provided that indicate the superior robustness of such algorithms.
Resumo:
The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.
Resumo:
In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.
Resumo:
Proceedings of the International Conference on Computational Cybernetics, Vienna University of Technology, August 30 - September 1, 2004
Resumo:
A new analytical methodology, based on liquid chromatography with fluorescence detection (LC-FD), after extraction, enzymatic hydrolysis, and solid-phase extraction (SPE) through Oasis HLB cartridges, was developed and validated for the simultaneous determination of three monohydroxy derivatives of polycyclic aromatic hydrocarbons (PAHs). The optimized analytical method is sensitive, accurate, and precise, with recoveries between 62 and 110% and limits of detection of 227, 9, and 45 ng/g for 1-hydroxynaphthalene, 2-hydroxyfluorene, and 1-hydroxypyrene, respectively. Their levels were estimated in different cephalopod matrices (edible tissues and hemolymph). The methodology was applied to samples of the major cephalopod species consumed worldwide. Of the 18 samples analyzed, 39% were contaminated with 1-hydroxynaphthalene, which was the only PAH metabolite detected. Its concentration ranged from 786 to 1145 ng/g. This highly sensitive and specific method allows the identification and quantitation of PAH metabolites in forthcoming food safety and environmental monitoring programs.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA = human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(eta(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy = bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(eta(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
When a pesticide is released into the environment, most of it is lost before it reaches its target. An effective way to reduce environmental losses of pesticides is by using controlled release technology. Microencapsulation becomes a promising technique for the production of controlled release agricultural formulations. In this work, the microencapsulation of chlorophenoxy herbicide MCPA with native b-cyclodextrin and its methyl and hydroxypropyl derivatives was investigated. The phase solubility study showed that both native and b-CD derivatives increased the water solubility of the herbicide and inclusion complexes are formed in a stoichiometric ratio of 1:1. The stability constants describing the extent of formation of the complexes have been determined by phase solubility studies. 1H NMR experiments were also accomplished for the prepared solid systems and the data gathered confirm the formation of the inclusion complexes. 1H NMR data obtained for the MCPA/CDs complexes disclosed noticeable proton shift displacements for OCH2 group and H6 aromatic proton of MCPA provided clear evidence of inclusion complexation process, suggesting that the phenyl moiety of the herbicide was included in the hydrophobic cavity of CDs. Free energy molecular mechanics calculations confirm all these findings. The gathered results can be regarded as an essential step to the development of controlled release agricultural formulations containing herbicide MCPA.
Resumo:
Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.
Resumo:
In recent papers, the authors obtained formulas for directional derivatives of all orders, of the immanant and of the m-th xi-symmetric tensor power of an operator and a matrix, when xi is a character of the full symmetric group. The operator norm of these derivatives was also calculated. In this paper, similar results are established for generalized matrix functions and for every symmetric tensor power.
Resumo:
The application of mathematical methods and computer algorithms in the analysis of economic and financial data series aims to give empirical descriptions of the hidden relations between many complex or unknown variables and systems. This strategy overcomes the requirement for building models based on a set of ‘fundamental laws’, which is the paradigm for studying phenomena usual in physics and engineering. In spite of this shortcut, the fact is that financial series demonstrate to be hard to tackle, involving complex memory effects and a apparently chaotic behaviour. Several measures for describing these objects were adopted by market agents, but, due to their simplicity, they are not capable to cope with the diversity and complexity embedded in the data. Therefore, it is important to propose new measures that, on one hand, are highly interpretable by standard personal but, on the other hand, are capable of capturing a significant part of the dynamical effects.