889 resultados para Forecast error variance
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
The monetary policy reaction function of the Bank of England is estimated by the standard GMM approach and the ex-ante forecast method developed by Goodhart (2005), with particular attention to the horizons for inflation and output at which each approach gives the best fit. The horizons for the ex-ante approach are much closer to what is implied by the Bank’s view of the transmission mechanism, while the GMM approach produces an implausibly slow adjustment of the interest rate, and suffers from a weak instruments problem. These findings suggest a strong preference for the ex-ante approach.
Resumo:
Various methodologies in economic literature have been used to analyse the international hydrocarbon retail sector. Nevertheless at a Spanish level these studies are much more recent and most conclude that generally there is no effective competition present in this market, regardless of the approach used. In this paper, in order to analyse the price levels in the Spanish petrol market, our starting hypothesis is that in uncompetitive markets the prices are higher and the standard deviation is lower. We use weekly retail petrol price data from the ten biggest Spanish cities, and apply Markov chains to fill the missing values for petrol 95 and diesel, and we also employ a variance filter. We conclude that this market demonstrates reduced price dispersion, regardless of brand or city.
Resumo:
Using survey expectations data and Markov-switching models, this paper evaluates the characteristics and evolution of investors' forecast errors about the yen/dollar exchange rate. Since our model is derived from the uncovered interest rate parity (UIRP) condition and our data cover a period of low interest rates, this study is also related to the forward premium puzzle and the currency carry trade strategy. We obtain the following results. First, with the same forecast horizon, exchange rate forecasts are homogeneous among different industry types, but within the same industry, exchange rate forecasts differ if the forecast time horizon is different. In particular, investors tend to undervalue the future exchange rate for long term forecast horizons; however, in the short run they tend to overvalue the future exchange rate. Second, while forecast errors are found to be partly driven by interest rate spreads, evidence against the UIRP is provided regardless of the forecasting time horizon; the forward premium puzzle becomes more significant in shorter term forecasting errors. Consistent with this finding, our coefficients on interest rate spreads provide indirect evidence of the yen carry trade over only a short term forecast horizon. Furthermore, the carry trade seems to be active when there is a clear indication that the interest rate will be low in the future.
Resumo:
We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.
Resumo:
A large influenza epidemic took place in Havana during the winter of 1988. The epidemiologic surveillance unit of the Pedro Kouri Institute of Tropical Medicine detected the begining of the epidemic wave. The Rvachev-Baroyan mathematical model of the geographic spread of an epidemic was used to forecast this epidemic under routine conditions of the public health system. The expected number of individuals who would attend outpatient services, because of influenza-like illness, was calculated and communicated to the health authorities within enough time to permit the introduction of available control measures. The approximate date of the epidemic peak, the daily expected number of individuals attending medical services, and the approximate time of the end of the epidemic wave were estimated. The prediction error was 12%. The model was sufficienty accurate to warrant its use as a pratical forecasting tool in the Cuban public health system.
Resumo:
A forecast of nonepidemic morbidity due to acute respiratory infections were carry out by using time series analysis. The data consisted of the weekly reports of medical patient consultation from ambulatory facilities from the whole country. A version of regression model was fitted to the data. Using this approach, we were able to detect the starting data of the epidemic under routine surveillance conditions for various age groups. It will be necessary to improve the data reporting system in order to introduce these procedures at the local health center level, as well as on the provincial level.
Resumo:
Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity--which includes omitted variables, omitted selection, simultaneity, common methods bias, and measurement error--renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation is confounded, including fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66 % and up to 90 % of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.
Resumo:
Report for the scientific sojourn carried out at the University of California at Berkeley, from September to December 2007. Environmental niche modelling (ENM) techniques are powerful tools to predict species potential distributions. In the last ten years, a plethora of novel methodological approaches and modelling techniques have been developed. During three months, I stayed at the University of California, Berkeley, working under the supervision of Dr. David R. Vieites. The aim of our work was to quantify the error committed by these techniques, but also to test how an increase in the sample size affects the resultant predictions. Using MaxEnt software we generated distribution predictive maps, from different sample sizes, of the Eurasian quail (Coturnix coturnix) in the Iberian Peninsula. The quail is a generalist species from a climatic point of view, but an habitat specialist. The resultant distribution maps were compared with the real distribution of the species. This distribution was obtained from recent bird atlases from Spain and Portugal. Results show that ENM techniques can have important errors when predicting the species distribution of generalist species. Moreover, an increase of sample size is not necessary related with a better performance of the models. We conclude that a deep knowledge of the species’ biology and the variables affecting their distribution is crucial for an optimal modelling. The lack of this knowledge can induce to wrong conclusions.
Resumo:
n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.