975 resultados para Forced Lienard equation
Resumo:
The initial boundary value problem for the Burgers equation in the domain x greater-or-equal, slanted 0, t > 0 with flux boundary condition at x = 0 has been solved exactly. The behaviour of the solution as t tends to infinity is studied and the “asymptotic profile at infinity” is obtained. In addition, the uniqueness of the solution of the initial boundary value problem is proved and its inviscid limit as var epsilon → 0 is obtained.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
A new formula for the solution of the general Abel Integral equation is derived, and an important special case is checked with the known result.
Resumo:
An exact representation of N-wave solutions for the non-planar Burgers equation u(t) + uu(x) + 1/2ju/t = 1/2deltau(xx), j = m/n, m < 2n, where m and n are positive integers with no common factors, is given. This solution is asymptotic to the inviscid solution for Absolute value of x < square-root (2Q0 t), where Q0 is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and is also asymptotic to the old age linear solution, as t tends to infinity; the formulae for the lobe Reynolds numbers are shown to have the correct behaviour in these limits. The general results apply to all j = m/n, m < 2n, and are rather involved; explicit results are written out for j = 0, 1, 1/2, 1/3 and 1/4. The case of spherical symmetry j = 2 is found to be 'singular' and the general approach set forth here does not work; an alternative approach for this case gives the large time behaviour in two different time regimes. The results of this study are compared with those of Crighton & Scott (1979).
Resumo:
This work deals with the effects of weak nonlinearity and weak dissipation on a linear wave in relativistic gasdynamics. Using perturbation and asymptotic expansions, a relativistic analogue of generalised one-dimensional Burgers' equation of classical gasdynamics is derived to describe far-field description of the wave. Steady state solution is presented for strict one-dimensional case.
Resumo:
We consider the equation u(t) + u(n)u(x) + H(x, t, u) = 0 and derive a transformation relating it to u(t) + u(n)u(x) = 0. Special cases of the equation appearing in applications are discussed. Initial value problems and asymptotic behaviour of the solution are studied.
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.
Resumo:
The correspondence between the forced magnetic reconnection induced by perturbing the boundary of the simple Taylor model and the surface-wave-induced magnetic reconnection given by Alfven resonance theory is pointed out explicitly by showing that the theory of forced magnetic reconnection is actually embedded in the Alfven resonance theory. The advantages of viewing the forced reconnection as surface-wave-induced reconnection are briefly discussed in the context of the formation of small-scale structures at the magnetospheric boundary and solar coronal heating.
Resumo:
An analytical method is developed for solving an inverse problem for Helmholtz's equation associated with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane interface. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the interface of the two fluids. These are determined from the pressure on the interface produced by the acoustic source. The effect of the surface tension force at the interface is taken into account in this paper. The application of the proposed analytical method to solve the inverse problem is also illustrated with several examples. In particular, exact solutions of two direct problems are first derived using standard classical methods which are then used in our proposed inverse method to recover the unknowns of the corresponding inverse problems. The results are found to be in excellent agreement.
Resumo:
A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.