992 resultados para Folha de S.Paulo - First page - violence
Resumo:
In mobile videos, small viewing size and bitrate limitation often cause unpleasant viewing experiences, which is particularly important for fast-moving sports videos. For optimizing the overall user experience of viewing sports videos on mobile phones, this paper explores the benefits of emphasizing Region of Interest (ROI) by 1) zooming in and 2) enhancing the quality. The main goal is to measure the effectiveness of these two approaches and determine which one is more effective. To obtain a more comprehensive understanding of the overall user experience, the study considers user’s interest in video content and user’s acceptance of the perceived video quality, and compares the user experience in sports videos with other content types such as talk shows. The results from a user study with 40 subjects demonstrate that zooming and ROI-enhancement are both effective in improving the overall user experience with talk show and mid-shot soccer videos. However, for the full-shot scenes in soccer videos, only zooming is effective while ROI-enhancement has a negative effect. Moreover, user’s interest in video content directly affects not only the user experience and the acceptance of video quality, but also the effect of content type on the user experience. Finally, the overall user experience is closely related to the degree of the acceptance of video quality and the degree of the interest in video content. This study is valuable in exploiting effective approaches to improve user experience, especially in mobile sports video streaming contexts, whereby the available bandwidth is usually low or limited. It also provides further understanding of the influencing factors of user experience.
Resumo:
We report on a longitudinal research study of the development of novice programmers in their first semester of programming. In the third week, almost half of our sample of students could not answer an explain-in-plain-English question, for code consisting of just three assignment statements, which swapped the values in two variables. We regard code that swaps the values of two variables as the simplest case of where a programming student can manifest a SOLO relational response. Our results demonstrate that the problems many students face with understanding code can begin very early, on relatively trivial code. However, using traditional programming exercises, these problems often go undetected until late in the semester. New approaches are required to detect and fix these problems earlier.
Resumo:
Following the completion of the draft Human Genome in 2001, genomic sequence data is becoming available at an accelerating rate, fueled by advances in sequencing and computational technology. Meanwhile, large collections of astronomical and geospatial data have allowed the creation of virtual observatories, accessible throughout the world and requiring only commodity hardware. Through a combination of advances in data management, data mining and visualization, this infrastructure enables the development of new scientific and educational applications as diverse as galaxy classification and real-time tracking of earthquakes and volcanic plumes. In the present paper, we describe steps taken along a similar path towards a virtual observatory for genomes – an immersive three-dimensional visual navigation and query system for comparative genomic data.
Resumo:
Being in paid employment is socially valued, and is linked to health, financial security and time use. Issues arising from a lack of occupational choice and control, and from diminished role partnerships are particularly problematic in the lives of people with an intellectual disability. Informal support networks are shown to influence work opportunities for people without disabilities, but their impact on the work experiences of people with disability has not been thoroughly explored. The experience of 'work' and preparation for work was explored with a group of four people with an intellectual disability (the participants) and the key members of their informal support networks (network members) in New South Wales, Australia. Network members and participants were interviewed and participant observations of work and other activities were undertaken. Data analysis included open, conceptual and thematic coding. Data analysis software assisted in managing the large datasets across multiple team members. The insight and actions of network members created and sustained the employment and support opportunities that effectively matched the needs and interests of the participants. Recommendations for future research are outlined.
Resumo:
SAP and its research partners have been developing a lan- guage for describing details of Services from various view- points called the Unified Service Description Language (USDL). At the time of writing, version 3.0 describes technical implementation aspects of services, as well as stakeholders, pricing, lifecycle, and availability. Work is also underway to address other business and legal aspects of services. This language is designed to be used in service portfolio management, with a repository of service descriptions being available to various stakeholders in an organisation to allow for service prioritisation, development, deployment and lifecycle management. The structure of the USDL metadata is specified using an object-oriented metamodel that conforms to UML, MOF and EMF Ecore. As such it is amenable to code gener-ation for implementations of repositories that store service description instances. Although Web services toolkits can be used to make these programming language objects available as a set of Web services, the practicalities of writing dis- tributed clients against over one hundred class definitions, containing several hundred attributes, will make for very large WSDL interfaces and highly inefficient “chatty” implementations. This paper gives the high-level design for a completely model-generated repository for any version of USDL (or any other data-only metamodel), which uses the Eclipse Modelling Framework’s Java code generation, along with several open source plugins to create a robust, transactional repository running in a Java application with a relational datastore. However, the repository exposes a generated WSDL interface at a coarse granularity, suitable for distributed client code and user-interface creation. It uses heuristics to drive code generation to bridge between the Web service and EMF granularities.
Resumo:
Item folksonomy or tag information is popularly available on the web now. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. In this paper, we propose to combine item taxonomy and folksonomy to reduce the noise of tags and make personalized item recommendations. The experiments conducted on the dataset collected from Amazon.com demonstrated the effectiveness of the proposed approaches. The results suggested that the recommendation accuracy can be further improved if we consider the viewpoints and the vocabularies of both experts and users.
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d=VC(F) bound on the graph density of a subgraph of the hypercube—one-inclusion graph. The first main result of this report is a density bound of n∙choose(n-1,≤d-1)/choose(n,≤d) < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d-contractible simplicial complexes, extending the well-known characterization that d=1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VC-dimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(log n) and is shown to be optimal up to a O(log k) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout
Resumo:
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.
Resumo:
We consider the problem of prediction with expert advice in the setting where a forecaster is presented with several online prediction tasks. Instead of competing against the best expert separately on each task, we assume the tasks are related, and thus we expect that a few experts will perform well on the entire set of tasks. That is, our forecaster would like, on each task, to compete against the best expert chosen from a small set of experts. While we describe the "ideal" algorithm and its performance bound, we show that the computation required for this algorithm is as hard as computation of a matrix permanent. We present an efficient algorithm based on mixing priors, and prove a bound that is nearly as good for the sequential task presentation case. We also consider a harder case where the task may change arbitrarily from round to round, and we develop an efficient approximate randomized algorithm based on Markov chain Monte Carlo techniques.
Resumo:
Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.
Resumo:
The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.