822 resultados para Flow-performance relationship


Relevância:

40.00% 40.00%

Publicador:

Resumo:

For years, researchers and human resources specialists have been searching for predictors of performance as well as for relevant performance dimensions (Barrick & Mount, 1991; Borman & Motowidlo, 1993; Campbell, 1990; Viswesvaran et al., 1996). In 1993, Borman and Motowidlo provided a framework by which traditional predictors such as cognitive ability and the Big Five personality factors predicted two different facets of performance: 1) task performance and 2) contextual performance. A meta-analysis was conducted to assess the validity of this model as well as that of other modified models. The relationships between predictors such as cognitive ability and personality variables and the two outcome variables were assessed. It was determined that even though the two facets of performance may be conceptually different, empirically they overlapped substantially (p= .75). Finally, results show that there is some evidence for cognitive ability as a predictor of both task and contextual performance and conscientiousness as a predictor of both task and contextual performance. The possible mediation of predictor-- criterion relationships was also assessed. The relationship between cognitive ability and contextual performance vanished when task performance was controlled.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of the United States Air Force (USAF) to sustain a high level of operational ability and readiness is dependent on the proficiency and expertise of its pilots. Recruitment, education, training, and retention of its pilot force are crucial factors in the USAF's attainment of its operational mission: defense of this nation and its allies. Failure of a student pilot during a training program does not only represent a loss of costly training expenditures to the American public, but often consists of loss of human life, aircraft, and property. This research focused on the Air Force Reserve Officer Training Corps' (AFROTC) selection method for student pilots for the light aircraft training (LATR) program. The LATR program is an intense 16 day flight training program that precedes the Air Force's undergraduate pilot training (UPT) program. The study subjects were 265 AFROTC cadets in the LATR program. A variety of independent variables from each subject's higher education curricular background as well as results of preselection tests, participation in varsity athletics, prior flying experience and gender were evaluated against subsequent performance in LATR. Performance was measured by a quantitative performance score developed by this researcher based on 28 graded training factors as well as overall pass or fail of the LATR program. Study results showed participation in university varsity athletics was very significantly and positively related to performance in the LATR program, followed by prior flying experience and to a very slight degree portions of the Air Force Officers Qualifying Test. Not significantly related to success in the LATR program were independent variables such as grade point average, scholastic aptitude test scores, academic major, gender and the AFROTC selection and ranking system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to explore symptom burden and its relationship to functional performance in patients with COPD. A descriptive, cross-sectional, correlational survey design was used and a sample of 214 patients with COPD. The sample was recruited from patients attending one of the major teaching hospitals in Dublin. Symptom burden was measured using the Memorial Symptom Assessment Scale (MSAS), and the functional performance was measured using the Functional Performance Inventory-Short Form (FPISF). Findings revealed that participants experienced a median of 13 symptoms. The most burdensome symptoms were shortness of breath, lack of energy, difficulty sleeping, worrying, dry mouth, feeling nervous, feeling irritable, and feeling sad. Participants with very severe COPD had the greatest symptom burden, followed by those with severe COPD, moderate COPD, and mild COPD. Symptom burden was higher for the psychological symptoms compared to the physical symptoms. Participants with mild COPD had the highest functional performance, followed by those with moderate COPD, very severe COPD, and severe COPD. Twenty symptoms were negatively correlated with overall functional performance, indicating that high symptom burden for those symptoms was associated with low overall functional performance. Moderate, negative, statistically significant correlations were found between the total symptom burden and overall functional performance, physical symptom burden and overall functional performance and psychological symptom burden and overall functional performance. A negative linear relationship was found between total symptom burden and overall functional performance among all stages of COPD except the mild group. No relationship was found between total symptom burden and overall functional performance for the moderate group. Healthcare professionals need to broaden the clinical and research assessment of physical and psychological symptoms in COPD; alleviating the burden of these symptoms may promote improved functional performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current trends in the automotive industry have placed increased importance on engine downsizing for passenger vehicles. Engine downsizing often results in reduced power output and turbochargers have been relied upon to restore the power output and maintain drivability. As improved power output is required across a wide range of engine operating conditions, it is necessary for the turbocharger to operate effectively at both design and off-design conditions. One off-design condition of considerable importance for turbocharger turbines is low velocity ratio operation, which refers to the combination of high exhaust gas velocity and low turbine rotational speed. Conventional radial flow turbines are constrained to achieve peak efficiency at the relatively high velocity ratio of 0.7, due the requirement to maintain a zero inlet blade angle for structural reasons. Several methods exist to potentially shift turbine peak efficiency to lower velocity ratios. One method is to utilize a mixed flow turbine as an alternative to a radial flow turbine. In addition to radial and circumferential components, the flow entering a mixed flow turbine also has an axial component. This allows the flow to experience a non-zero inlet blade angle, potentially shifting peak efficiency to a lower velocity ratio when compared to an equivalent radial flow turbine.
This study examined the effects of varying the flow conditions at the inlet to a mixed flow turbine and evaluated the subsequent impact on performance. The primary parameters examined were average inlet flow angle, the spanwise distribution of flow angle across the inlet and inlet flow cone angle. The results have indicated that the inlet flow angle significantly influenced the degree of reaction across the rotor and the turbine efficiency. The rotor studied was a custom in-house design based on a state-of-the-art radial flow turbine design. A numerical approach was used as the basis for this investigation and the numerical model has been validated against experimental data obtained from the cold flow turbine test rig at Queen’s University Belfast. The results of the study have provided a useful insight into how the flow conditions at rotor inlet influence the performance of a mixed flow turbine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose – The objective of this exploratory study is to investigate the “flow-through” or relationship between top-line measures of hotel operating performance (occupancy, average daily rate and revenue per available room) and bottom-line measures of profitability (gross operating profit and net operating income), before and during the recent great recession. Design/methodology/approach – This study uses data provided by PKF Hospitality Research for the period from 2007-2009. A total of 714 hotels were analyzed and various top-line and bottom-line profitability changes were computed using both absolute levels and percentages. Multiple regression analysis was used to examine the relationship between top and bottom line measures, and to derive flow-through ratios. Findings – The results show that average daily rate (ADR) and occupancy are significantly and positively related to gross operating profit per available room (GOPPAR) and net operating income per available room (NOIPAR). The evidence indicates that ADR, rather than occupancy, appears to be the stronger predictor and better measure of RevPAR growth and bottom-line profitability. The correlations and explained variances are also higher than those reported in prior research. Flow-through ratios range between 1.83 and 1.91 for NOIPAR, and between 1.55 and 1.65 for GOPPAR, across all chain-scales. Research limitations/implications – Limitations of this study include the limited number of years in the study period, limited number of hotels in a competitive set, and self-selection of hotels by the researchers. Practical implications – While ADR and occupancy work in combination to drive profitability, the authors' study shows that ADR is the stronger predictor of profitability. Hotel managers can use flow-through ratios to make financial forecasts, or use them as inputs in valuation models, to forecast future profitability. Originality/value – This paper extends prior research on the relationship between top-line measures and bottom-line profitability and serves to inform lodging owners, operators and asset managers about flow-through ratios, and how these ratios impact hotel profitability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer rates and have been identified as a most promising technology for integration into compact cold plates. Unfortunately, the absence of phenomenological insights and physical models hinders the extrapolation of grooved-tube performance to new applications. The success of regime-based heat transfer correlations for smooth tubes has motivated the current effort to explore the relationship between flow regimes and enhanced heat transfer in internally-grooved tubes. In this thesis, a detailed analysis of smooth and internally-grooved tube data reveals that performance improvement in internally-grooved tubes at low-to-intermediate mass flux is a result of early flow regime transition. Based on this analysis, a new flow regime map and corresponding heat transfer coefficient correlation, which account for the increased wetted angle, turbulence, and Gregorig effects unique to internally-grooved tubes, were developed. A two-phase test facility was designed and fabricated to validate the newly-developed flow regime map and regime-based heat transfer coefficient correlation. As part of this setup, a non-intrusive optical technique was developed to study the dynamic nature of two-phase flows. It was found that different flow regimes result in unique temporally varying film thickness profiles. Using these profiles, quantitative flow regime identification measures were developed, including the ability to explain and quantify the more subtle transitions that exist between dominant flow regimes. Flow regime data, based on the newly-developed method, and heat transfer coefficient data, using infrared thermography, were collected for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities approaching 1. In total, over 6500 combined data points for the adiabatic and diabatic smooth and internally-grooved tubes were acquired. Based on results from the experiments and a reinterpretation of data from independent researchers, it was established that heat transfer enhancement in internally-grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime transition to Annular flow. The regime-based heat transfer coefficient outperformed empirical correlations from the literature, with mean and absolute deviations of 4.0% and 32% for the full range of data collected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different types of base fluids, such as water, engine oil, kerosene, ethanol, methanol, ethylene glycol etc. are usually used to increase the heat transfer performance in many engineering applications. But these conventional heat transfer fluids have often several limitations. One of those major limitations is that the thermal conductivity of each of these base fluids is very low and this results a lower heat transfer rate in thermal engineering systems. Such limitation also affects the performance of different equipments used in different heat transfer process industries. To overcome such an important drawback, researchers over the years have considered a new generation heat transfer fluid, simply known as nanofluid with higher thermal conductivity. This new generation heat transfer fluid is a mixture of nanometre-size particles and different base fluids. Different researchers suggest that adding spherical or cylindrical shape of uniform/non-uniform nanoparticles into a base fluid can remarkably increase the thermal conductivity of nanofluid. Such augmentation of thermal conductivity could play a more significant role in enhancing the heat transfer rate than that of the base fluid. Nanoparticles diameters used in nanofluid are usually considered to be less than or equal to 100 nm and the nanoparticles concentration usually varies from 5% to 10%. Different researchers mentioned that the smaller nanoparticles concentration with size diameter of 100 nm could enhance the heat transfer rate more significantly compared to that of base fluids. But it is not obvious what effect it will have on the heat transfer performance when nanofluids contain small size nanoparticles of less than 100 nm with different concentrations. Besides, the effect of static and moving nanoparticles on the heat transfer of nanofluid is not known too. The idea of moving nanoparticles brings the effect of Brownian motion of nanoparticles on the heat transfer. The aim of this work is, therefore, to investigate the heat transfer performance of nanofluid using a combination of smaller size of nanoparticles with different concentrations considering the Brownian motion of nanoparticles. A horizontal pipe has been considered as a physical system within which the above mentioned nanofluid performances are investigated under transition to turbulent flow conditions. Three different types of numerical models, such as single phase model, Eulerian-Eulerian multi-phase mixture model and Eulerian-Lagrangian discrete phase model have been used while investigating the performance of nanofluids. The most commonly used model is single phase model which is based on the assumption that nanofluids behave like a conventional fluid. The other two models are used when the interaction between solid and fluid particles is considered. However, two different phases, such as fluid and solid phases is also considered in the Eulerian-Eulerian multi-phase mixture model. Thus, these phases create a fluid-solid mixture. But, two phases in the Eulerian-Lagrangian discrete phase model are independent. One of them is a solid phase and the other one is a fluid phase. In addition, RANS (Reynolds Average Navier Stokes) based Standard κ-ω and SST κ-ω transitional models have been used for the simulation of transitional flow. While the RANS based Standard κ-ϵ, Realizable κ-ϵ and RNG κ-ϵ turbulent models are used for the simulation of turbulent flow. Hydrodynamic as well as temperature behaviour of transition to turbulent flows of nanofluids through the horizontal pipe is studied under a uniform heat flux boundary condition applied to the wall with temperature dependent thermo-physical properties for both water and nanofluids. Numerical results characterising the performances of velocity and temperature fields are presented in terms of velocity and temperature contours, turbulent kinetic energy contours, surface temperature, local and average Nusselt numbers, Darcy friction factor, thermal performance factor and total entropy generation. New correlations are also proposed for the calculation of average Nusselt number for both the single and multi-phase models. Result reveals that the combination of small size of nanoparticles and higher nanoparticles concentrations with the Brownian motion of nanoparticles shows higher heat transfer enhancement and thermal performance factor than those of water. Literature suggests that the use of nanofluids flow in an inclined pipe at transition to turbulent regimes has been ignored despite its significance in real-life applications. Therefore, a particular investigation has been carried out in this thesis with a view to understand the heat transfer behaviour and performance of an inclined pipe under transition flow condition. It is found that the heat transfer rate decreases with the increase of a pipe inclination angle. Also, a higher heat transfer rate is found for a horizontal pipe under forced convection than that of an inclined pipe under mixed convection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Nurses and nursing students are often first responders to in-hospital cardiac arrest events; thus they are expected to perform Basic Life Support (BLS) and use an automated external defibrillator (AED) without delay. The aim of this study was to explore the relationship between nursing students’ self-efficacy and performance before and after receiving a particular training intervention in BLS/AED. Materials and methods: Explanatory correlational study. 177 nursing students received a 4-h training session in BLS/AED after being randomized to either a self-directed (SDG) or an instructor-directed teaching group (IDG).1 A validated self-efficacy scale, the Cardiff Test and Laerdal SkillReporter® software were used to assess students’ self-efficacy and performance in BLS/AED at pre-test, post-test and 3-month retention-test. Independent t-test analysis was performed to compare the differences between groups at pre-test. Pearson coefficient (r) was used to calculate the strength of the relationship between self-efficacy and performance in both groups at pre-test, post-test and retention-test. Results: Independent t-tests analysis showed that there were non-significant differences (p-values > 0.05) between groups for any of the variables measured. At pre-test, results showed that correlation between self-efficacy and performance was moderate for the IDG (r = 0.53; p < 0.05) and the SDG (r = 0.49; p < 0.05). At post-test, correlation between self-efficacy and performance was much higher for the SDG (r = 0.81; p < 0.05) than for the IDG (r = 0.32; p < 0.05), which in fact was weaker than at pre-test. Finally, it was found that whereas the correlation between self-efficacy and performance increased from the post-test to the retention-test to almost reach baseline levels for the ILG (r = 0.52; p < 0.05), it slightly decreased in this phase for the SDG (r = 0.77; p < 0.05). Conclusion: Student-directed strategies may be more effective than instructor-directed strategies at promoting self-assessment and, therefore, may help to improve and maintain the relationship between nursing student self-efficacy and actual ability to perform BLS/AED.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Career Academy instructors’ technical literacy is vital to the academic success of students. This nonexperimental ex post facto study examined the relationships between the level of technical literacy of instructors in career academies and student academic performance. It was also undertaken to explore the relationship between the pedagogical training of instructors and the academic performance of students. Out of a heterogeneous population of 564 teachers in six targeted schools, 136 teachers (26.0 %) responded to an online survey. The survey was designed to gather demographic and teaching experience data. Each demographic item was linked by researchers to teachers’ technology use in the classroom. Student achievement was measured by student learning gains as assessed by the reading section of the FCAT from the previous to the present school year. Linear and hierarchical regressions were conducted to examine the research questions. To clarify the possibility of teacher gender and teacher race/ethnic group differences by research variable, a series of one-way ANOVAs were conducted. As revealed by the ANOVA results, there were not statistically significant group differences in any of the research variables by teacher gender or teacher race/ethnicity. Greater student learning gains were associated with greater teacher technical expertise integrating computers and technology into the classroom, even after controlling for teacher attitude towards computers. Neither teacher attitude toward technology integration nor years of experience in integrating computers into the curriculum significantly predicted student learning gains in the regression models. Implications for HRD theory, research, and practice suggest that identifying teacher levels of technical literacy may help improve student academic performance by facilitating professional development strategies and new parameters for defining highly qualified instructors with 21st century skills. District professional development programs can benefit by increasing their offerings to include more computer and information communication technology courses. Teacher preparation programs can benefit by including technical literacy as part of their curriculum. State certification requirements could be expanded to include formal surveys to assess teacher use of technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main focus of this work is to define a numerical methodology to simulate an aerospike engine and then to analyse the performance of DemoP1, which is a small aerospike demonstrator built by Pangea Aerospace. The aerospike is a promising solution to build more efficient engine than the actual one. Its main advantage is the expansion adaptation that allows to reach the optimal expansion in a wide range of ambient pressures delivering more thrust than an equivalent bell-shaped nozzle. The main drawbacks are the cooling system design and the spike manufacturing but nowadays, these issues seem to be overcome with the use of the additive manufacturing method. The simulations are performed with dbnsTurbFoam which is a solver of OpenFOAM. It has been designed to simulate a supersonic compressible turbulent flow. This work is divided in four chapters. The first one is a short introduction. The second one shows a brief summary of the theoretical performance of the aerospike. The third one introduces the numerical methodology to simulate a compressible supersonic flow. In the fourth chapter, the solver has been verified with an experiment found in literature. And in the fifth chapter, the simulations on DemoP1 engine are illustrated.