964 resultados para Flow-mediated Dilatation
Resumo:
stract This paper proposes a hybrid discontinuous control methodology for a voltage source converter (VSC), which is used in an uninterrupted power supply (UPS) application. The UPS controls the voltage at the point of common coupling (PCC). An LC filter is connected at the output of the VSC to bypass switching harmonics. With the help of both filter inductor current and filter capacitor voltage control, the voltage across the filter capacitor is controlled. Based on the voltage error, the control is switched between current and voltage control modes. In this scheme, an extra diode state is used that makes the VSC output current discontinuous. This diode state reduces the switching losses. The UPS controls the active power it supplies to a three-phase, four-wire distribution system. This gives a full flexibility to the grid to buy power from the UPS system depending on its cost and load requirement at any given time. The scheme is validated through simulation using PSCAD.
Resumo:
We have developed a bioreactor vessel design which has the advantages of simplicity and ease of assembly and disassembly, and with the appropriately determined flow rate, even allows for a scaffold to be suspended freely regardless of its weight. This article reports our experimental and numerical investigations to evaluate the performance of a newly developed non-perfusion conical bioreactor by visualizing the flow through scaffolds with 45° and 90° fiber lay down patterns. The experiments were conducted at the Reynolds numbers (Re) 121, 170, and 218 based on the local velocity and width of scaffolds. The flow fields were captured using short-time exposures of 60 µm particles suspended in the bioreactor and illuminated using a thin laser sheet. The effects of scaffold fiber lay down pattern and Reynolds number were obtained and correspondingly compared to results obtained from a computational fluid dynamics (CFD) software package. The objectives of this article are twofold: to investigate the hypothesis that there may be an insufficient exchange of medium within the interior of the scaffold when using our non-perfusion bioreactor, and second, to compare the flows within and around scaffolds of 45° and 90° fiber lay down patterns. Scaffold porosity was also found to influence flow patterns. It was therefore shown that fluidic transport could be achieved within scaffolds with our bioreactor design, being a non-perfusion vessel. Fluid velocities were generally same of the same or one order lower in magnitude as compared to the inlet flow velocity. Additionally, the 90° fiber lay down pattern scaffold was found to allow for slightly higher fluid velocities within, as compared to the 45° fiber lay down pattern scaffold. This was due to the architecture and pore arrangement of the 90° fiber lay down pattern scaffold, which allows for fluid to flow directly through (channel-like flow).
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
This paper presents the simulation model development of passenger flow in a metro station. The model allows studies of passenger flow in stations with different layouts and facilities, thus providing valuable information, such as passenger flow and density of passenger at critical locations and passenger-handling facilities within a station, to the operators. The adoption of the concept of Petri nets in the simulation model is discussed. Examples are provided to demonstrate its application to passenger flow analysis, train scheduling and the testing of alternative station layouts.
Resumo:
Probabilistic load flow techniques have been adopted in AC electrified railways to study the load demand under various train service conditions. This paper highlights the differences in probabilistic load flow analysis between the usual power systems and power supply systems in AC railways; discusses the possible difficulties in problem formulation and presents the link between train movement and the corresponding power demand for load flow calculation.
Resumo:
Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.
Resumo:
In this paper, a rate-based flow control scheme based upon per-VC virtual queuing is proposed for the Available Bit Rate (ABR) service in ATM. In this scheme, each VC in a shared buffer is assigned a virtual queue, which is a counter. To achieve a specific kind of fairness, an appropriate scheduler is applied to the virtual queues. Each VC's bottleneck rate (fair share) is derived from its virtual cell departure rate. This approach of deriving a VC's fair share is simple and accurate. By controlling each VC with respect to its virtual queue and queue build-up in the shared buffer, network congestion is avoided. The principle of the control scheme is first illustrated by max–min flow control, which is realised by scheduling the virtual queues in round-robin. Further application of the control scheme is demonstrated with the achievement of weighted fairness through weighted round robin scheduling. Simulation results show that with a simple computation, the proposed scheme achieves the desired fairness exactly and controls network congestion effectively.
Resumo:
To evaluate whether luminance contrast discrimination losses in amblyopia on putative magnocellular (MC) and parvocellular (PC) pathway tasks reflect deficits at retinogeniculate or cortical sites. Fifteen amblyopes including six anisometropes, seven strabismics, two mixed and 12 age-matched controls were investigated. Contrast discrimination was measured using established psychophysical procedures that differentiate MC and PC processing. Data were described with a model of the contrast response of primate retinal ganglion cells. All amblyopes and controls displayed the same contrast signatures on the MC and PC tasks, with three strabismics having reduced sensitivity. Amblyopic PC contrast gain was similar to electrophysiological estimates from visually normal, non-human primates. Sensitivity losses evident in a subset of the amblyopes reflect cortical summation deficits, with no change in retinogeniculate contrast responses. The data do not support the proposal that amblyopic contrast sensitivity losses on MC and PC tasks reflect retinogeniculate deficits, but rather are due to anomalous post-retinogeniculate cortical processing of retinal signals.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.