915 resultados para Fishes - Ecology - Victoria
Resumo:
Repeated evolution of the same phenotypic difference during independent episodes of speciation is strong evidence for selection during speciation. More than 1,000 species of cichlids, >10% of the world's freshwater fish species, have arisen within the past million years in Lakes Malawi and Victoria in eastern Africa. Many pairs of closely related sympatric species differ in their nuptial coloration in very similar ways. Nuptial coloration is important in their mate choice, and speciation by sexual selection on genetically or ecologically constrained variation in nuptial coloration had been proposed, which would repeatedly produce similar nuptial types in different populations, a prediction that was difficult to test in the absence of population-level phylogenies. We measured genetic similarity between individuals within and between populations, species, and lake regions by typing 59 individuals at >2,000 polymorphic genetic loci. From these data, we reconstructed, to our knowledge, the first larger species level phylogeny for the most diverse group of Lake Malawi cichlids. We used the genetic and phylogenetic data to test the divergent selection scenario against colonization, character displacement, and hybridization scenarios that could also explain diverse communities. Diversity has arisen by replicated radiations into the same color types, resulting in phenotypically very different, yet closely related, species within and phenotypically highly similar yet unrelated sets of species between regions, which is consistent with divergent selection during speciation and is inconsistent with colonization and character displacement models.
Resumo:
Lands inhabited by indigenous peoples often have low population density but abundant natural resources. For those reasons, many actors have historically attempted to occupy those lands or use the resources in them. Increasing pressures over lands occupied by indigenous peoples have resulted in the awakening of indigenous peoples over their rights to land and resources generating many debates over indigenous peoples' rights to land and self-governance. In this article, we provide a historical and geographical overview of territorial and governance issues among the Tsimane', an indigenous group native to the Bolivian Amazon. We examine how the Bolivian state economic policies implemented during the 20th century affected the Tsimane' ancestral lands, and how – over the late-20th century – the Bolivian state accommodated Tsimane' claims to lands in between multiple interests. We show how national policies led to the reconfiguration of Tsimane' territoriality and to a fragmented institutional representation. Current indigenous territories and indigenous political representation are an expression of conflictive policies that have involved multiple actors and their specific interests on indigenous lands and its resources.
Resumo:
East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales.
Resumo:
The extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.
Resumo:
Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14 600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14 600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14 600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin.
Resumo:
The radiation of cichlid fishes in the African great lakes is often described as adaptive, because, at a superficial level, cichlid fishes seem adapted to the ecological niches they occupy. However, adaptiveness has rarely been studied. We investigated to what extent island populations of three species of the rock-dwelling genus Neochromis, endemic to Lake Victoria, are adapted anatomically to exploit locally abundant resources. Specifically, we asked whether different resource environments were reflected in differences in the feeding apparatus, both within species and between species. In populations of two specialized biters, the algae scrapers N. rufocaudalis and N. omnicaeruleus, the biting force of the lower jaw increased with increasing amount of items that require biting in the diet. N. greenwoodi is a less specialized biter; we found differences between two populations in the hyoid position and in the premaxilla that enhance suction feeding. These adaptations were related to the amount of items requiring suction. Comparing across three sympatric pairs of species, in each case different diets were reflected in differences in anatomy.
Resumo:
Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.
Resumo:
We studied the effect of male coloration on interspeciÆc female mate choice in two closely related species of haplochromine cichlids from Lake Victoria. The species differ primarily in male coloration. Males of one species are red, those of the other are blue. We re- corded the behavioral responses of females to males of both species in paired male trials under white light and under monochromatic light, under which the interspecific differences in coloration were masked. Females of both species exhibited species-assortative mate choice when colour differences were visible, but chose non-assortatively when colour differences were masked by light conditions. Neither male behaviour nor overall female response frequencies differed between light treatments. That female preferences could be altered by manipulating the perceived colour pattern implies that the colour itself is used in interspecific mate choice, rather than other characters. Hence, male coloration in haplochromine cichlids does underlie sexual selection by direct mate choice, involving the capacity for individual assessment of potential mates by the female. Females of both species responded more frequently to blue males under monochromatic light. Blue males were larger and displayed more than red males. This implies a hierarchy of choice criteria. Females may use male display rates, size, or both when colour is unavailable. Where available, colour has gained dominance over other criteria. This may explain rapid speciation by sexual selection on male coloration, as proposed in a recent mathematical model.
Resumo:
Mate choice may play an important role in animal speciation. The haplochromine cichlids of Lake Victoria are suitable to test this hypothesis. Diversity in ecology, coloration and anatomy evolved in these fish faster than postzygotic barriers to gene flow, and little is known about how this diversity is maintained. It was tested whether recognizable forms are selection-maintained morphs or reproductively isolated species by investigating in the field reproductive timing, location of spawning sites, and mate choice behaviour. There was a large interspecific overlap in timing of breeding and location of spawning sites, which was largest in members of the same genus. Behavioural mate choice of such closely related taxa was highly assortative, such that it is likely that they are sexually isolated species and that direct mate choice is the major force that directs gene flow and maintains form diversity. The results differ from what is known about recent radiations of other lacustrine fish groups where speciation seems to be driven by diverging microhabitat preferences or diverging timing of reproduction, but are in agreement with predictions from models of speciation by diverging mate preferences.
Resumo:
During the years 1984–1987 Lake Victoria in East Africa experienced what is probably the largest mass extinction of contemporary vertebrates. Within a decade about 200 endemic species of haplochromine cichlids disappeared. The extinctions that occurred in the 1980s have been documented predominantly on species of offshore and sub-littoral waters in the Mwanza Gulf of southern Lake Victoria. Although the littoral fauna of southern Lake Victoria had not been examined in detail, their diversity seemed less affected by the changes in the ecosystem. We give results of the first comprehensive inventory of the littoral cichlid fauna in southern Lake Victoria and discuss its conservation status. We also report on new developments in the sub-littoral fauna after 1990. More than 50 littoral and 15 sub-littoral stations were sampled between the years 1991 to 1995. Of the littoral stations, 34 were sampled for the first time. One hundred sixty three species of haplochromines were collected. Of these, 102 species were previously unknown. About two thirds of them live in rocky areas that were sampled for the first time. Littoral rocky habitats harbored the highest diversity. Since 1990, however, 13 more species disappeared from established sampling stations in littoral habitats. Fishing practices, spreading of exotic fishes, water hyacinth, and eutrophication are considered important threats to the littoral fauna. Also in the upper sub-littoral the number of species declined further. On deeper sub-littoral mud bottoms individual and species numbers increased again, although they are nowhere close to those found before the Nile perch (Lates niloticus) upsurge. This fauna differs from the well studied pre-Nile perch fauna. At well-established sampling stations, the sub-littoral zone is dominated by previously unknown species, and some known species have performed dramatic habitat shifts.
Resumo:
Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.