833 resultados para Fiber lasers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By transforming the optical fiber span into an ultralong cavity laser, we experimentally demonstrate quasilossless transmission over long (up to 75 km) distances and virtually zero signal power variation over shorter (up to 20 km) spans, opening the way for the practical implementation of integrable nonlinear systems in optical fiber. As a by-product of our technique, the longest ever laser (to the best of our knowledge) has been implemented, with a cavity length of 75 km. A simple theory of the lossless fiber span, in excellent agreement with the observed results, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural modification m gratings inscribed point-by-point by a femtosecond laser is investigated using quantitative phase microscopy. The gratings present a central region with a depressed refractive index surrounded by an outer corona with increased index. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direction-sensitive bend sensor in standard single-mode fiber is demonstrated for the first time based on an axially-offset fiber Bragg grating, directly written by an infrared femtosecond laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a frequency-modulation technique that is applicable to two-beam interferometric systems illuminated by semiconductor diode lasers. The technique permits a determination of the optical path difference between the two arms of the interferometer and is used here to extend the range of a fiber polarimetric strain sensor by determining the order of the particular polarimetric fringe under consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotube polycarbonate composites with controlled nanotube-bundle size are prepared by dispersion with conjugated polymers followed by blending with polycarbonate. The composite has uniform sub-micrometer nanotube bundles in high concentration, shows strong nonlinear optical absorption, and generates 193 fs pulses when used as passive mode-locker in a fiber laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of the core-propagating light with an intersecting microslit within a conventional single-mode fiber are investigated. Orientation-dependent out-coupling of core light was utilized to create side-detection, miniature fiber rotation sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-by-point inscription of sub-µm period fiber Bragg gratings with good spectral quality, first order Bragg resonances within the C-band is achieved. Distinct polarization characteristics are further observed in these fiber gratings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fueled by their high third-order nonlinearity and nonlinear saturable absorption, carbon nanotubes (CNT) are expected to become an integral part of next-generation photonic devices such as all-optical switches and passive mode-locked lasers. However, in order to fulfill this expectation it is necessary to identify a suitable platform that allows the efficient use of the optical properties of CNT. In this paper, we propose and implement a novel device consisting of an optofluidic device filled with a dispersion of CNT. By fabricating a microchannel through the core of a conventional fiber and filling it with a homogeneous solution of CNTs on Dimethylformamide (DMF), a compact, all-fiber saturable absorber is realized. The fabrication of the micro-fluidic channel is a two-step process that involves femtosecond laser micro-fabrication and chemical etching of the laser-modified regions. All-fiber high-energy, passive mode-locked lasing is demonstrated with an output power of 13.5 dBm. The key characteristics of the device are compactness and robustness against optical, mechanical and thermal damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of ultra-long (UL) cavity (hundreds of meters to several kilometres) mode-locked fibre lasers for the generation of high-energy light pulses with relatively low (sub-megahertz) repetition rates has emerged as a new rapidly advancing area of laser physics. The first demonstration of high pulse energy laser of this type was followed by a number of publications from many research groups on long-cavity Ytterbium and Erbium lasers featuring a variety of configurations with rather different mode-locked operations. The substantial interest to this new approach is stimulated both by non-trivial underlying physics and by the potential of high pulse energy laser sources with unique parameters for a range of applications in industry, bio-medicine, metrology and telecommunications. It is well known, that pulse generation regimes in mode-locked fibre lasers are determined by the intra-cavity balance between the effects of dispersion and non-linearity, and the processes of energy attenuation and amplification. The highest per-pulse energy has been achieved in normal-dispersion UL fibre lasers mode-locked through nonlinear polarization evolution (NPE) for self-modelocking operation. In such lasers are generated the so-called dissipative optical solitons. The uncompensated net normal dispersion in long-cavity resonatorsusually leads to very high chirp and, consequently, to a relatively long duration of generated pulses. This thesis presents the results of research Er-doped ultra-long (more than 1 km cavity length) fibre lasers mode-locked based on NPE. The self-mode-locked erbium-based 3.5-km-long all-fiber laser with the 1.7 µJ pulse energy at a wavelength of 1.55 µm was developed as a part of this research. It has resulted in direct generation of short laser pulses with an ultralow repetition rate of 35.1 kHz. The laser cavity has net normal-dispersion and has been fabricated from commercially-available telecom fibers and optical-fiber elements. Its unconventional linear-ring design with compensation for polarization instability ensures high reliability of the self-mode-locking operation, despite the use of a non polarization-maintaining fibers. The single pulse generation regime in all-fibre erbium mode-locking laser based on NPE with a record cavity length of 25 km was demonstrated. Modelocked lasers with such a long cavity have never been studied before. Our result shows a feasibility of stable mode-locked operation even for an ultra-long cavity length. A new design of fibre laser cavity – “y-configuration”, that offers a range of new functionalities for optimization and stabilization of mode-locked lasing regimes was proposed. This novel cavity configuration has been successfully implemented into a long-cavity normal-dispersion self-mode-locked Er-fibre laser. In particular, it features compensation for polarization instability, suppression of ASE, reduction of pulse duration, prevention of in-cavity wave breaking, and stabilization of the lasing wavelength. This laser along with a specially designed double-pass EDFA have allowed us to demonstrate anenvironmentally stable all-fibre laser system able to deliver sub-nanosecond high-energy pulses with low level of ASE noise.