960 resultados para Fetal Development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T-3) from the less bioactive thyroxin (T-4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T-3/T-4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While viviparity confers protection to the embryos during gestation, it increases energetic costs for the mother, which acquires new relations to its offspring. Maternal-fetal transfer of nutrients can occur in different patterns: as lecithotrophy (nourished by yolk) or matrotrophy (nourished by the mother). The development of Poecilia vivipara embryos was described macroscopically and microscopically, and the form of nutritional provisioning was identified. Embryonic development was divided into three prefertilization and seven postfertilization stages. The first organ to appear is the notochord, followed by the nervous, digestive and cardiovascular systems, and then by muscles and eyes. Embryonic nutritional provisioning was lecithotrophic, with yolk persisting until the last developmental stages and rich in proteins and polysaccharides. This kind of embryonic nutrition confirms the pattern found in the family Poeciliidae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal undernutrition affects the foetal development, promoting renal alterations and adult hypertension. The present study investigates, in adult male rats, the effect of food restriction in utero on arterial blood pressure changes (AP), and its possible association with the number of nephrons, renal function and angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MCR) receptors expression. The daily food supply to pregnant rats was measured and one group (n=5) received normal quantity of food (NF) while the other group received 50% of that (FR50) (n=5). The AP was measured weekly. At 16 weeks of life, fractionator’s method was used to estimate glomeruli number in histological slices. The renal function was estimate by creatinine and lithium clearances. Blood and urine samples were collected to biochemical determination of creatinine, sodium, potassium and lithium. At 90th and 23rd days of life, kidneys were also processed to AT1R, AT2R, GR and MCR immunolocalization and for western blotting analysis. FR50 offspring shows a significant reduction in BW (FR50: 5.67 ± 0.16 vs. 6.84 ± 0.13g in NF, P<0.001) and increased AP from 6th to 12nd week (6thwk FR50: 149.1 ± 3.4 vs. 125.1 ± 3.2mmHg in NF, P<0.001and, 12ndwk FR50: 164.4 ± 4.9 vs. 144.0 ± 3.3 mmHg in NF, P=0.02). Expression of AT1R and AT2R were significantly decreased in FR50 (AT1, 59080 ± 2709 vs. 77000 ± 3591 in NF, P=0.05; AT2, 27500 ± 95.50 vs. 67870 ± 1509 in NF, P=0.001) while the expression of GR increased in FR50 (36090 ± 781.5 vs. 4446 ± 364.5 in NF, P=0.0007). The expression of MCR did not change significantly. We also verified a pronounced decrease in fractional urinary sodium excretion in FR50 offspring (0.03 ± 0.02 vs. 0.06 ± 0.04 in NF, p=0.03). This occurred despite unchanged creatinine clearance. The study led us to suggest that fetal undernutrition, with increased fetal exposure... (Complete abstract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of maternal lead poisoning during pregnancy on the development of the jaw (Meckel's cartilage) of rat fetuses by histologic and morphometric methods. Pregnant rats received a single intraperitoneal injection of 2.5 mg of lead acetate/100g body weight on the 10th day of pregnancy. Meckel's cartilage of fetuses of the lead-treated group showed smaller volume density and size of the lacunae, as well as modification of the lacunae shape. Moreover, the number density of lacunae and the volume density of the matrix increased significantly in the Meckel's cartilage in treated group fetuses. The results suggest that lead poisoning during the period of organogenesis can induce disturbances in the development and differentiation of the fetal stomatognathic system. Reducing the consumption of alcoholic beberages and smoking cessation by women in childbearing age, along with a strict policy of control of the environmental lead exposure can bring great benefits to the future generations of children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain amino acids, such as leucine (Leu) are not only substrates for protein synthesis but also are important regulators of protein metabolism. Moreover, it is known that alterations in intrauterine growth favor the development of chronic diseases in adulthood. Therefore, we investigated the role of Leu in combination with other BCAA on effects that are induced by maternal protein restriction on fetal growth. Wistar rats were divided into 4 groups according to the diet provided during pregnancy: control (C; 20% casein); V+I [5% casein + 2% L-valine (Val) + 2% L-isoleucine (Ile)1; KYT 15% casein + 1.8% L-lysine (Lys) + 1.2% L-tyrosine (Tyr) + 1% L-threonine (Thr)1; and BCAA (5% casein + 1.8% L-Leu + 1.2% L-Val + 1% L-Ile). Maternal protein restriction reduced the growth and organ weight of the offspring of dams receiving the V+I and KYT diets compared with the C group. Supplementation with BCAA reversed this growth deficit, minimizing the difference or restoring the mass of organs and carcass fat, the liver and muscle protein, and the RNA concentrations compared with newborns in the C group (P < 0.05). These effects could be explained by the activation of the mTOR signaling pathway, because phosphorylation of 4E-BP1 in the liver of offspring of the BCAA group was greater than that in the C, V+I, and KYT groups. The present results identify a critical role for Leu in association with other BCAA in the activation of the mTOR signaling pathway for the control of altered intrauterine growth induced by a maternal low-protein diet. J. Nutr. 142: 924-930, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods: Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results: A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions: Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.