998 resultados para Fenótipo Tr-1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, similar to conventional asphalt, except at low temperatures. Phase II of this project addresses this shortcoming and evaluates the Superpave performance of laboratory mixes produced with the enhanced bio-binders. The main objective of this research was to develop a bio-binder capable of replacing conventional asphalt in flexible pavements by incorporating ground tire rubber (GTR) into bio-oil derived from fast pyrolysis of agriculture and forestry residues. The chemical compatibility of the new bio-binder with GTR was assessed, and the low-temperature performance of the bio-binders was enhanced by the use of GTR. The newly developed binder, which consisted of 80 percent conventional binder and 20 percent rubber-modified bio-oil (85 percent bio-oil with 15 percent GTR), was used to produce mixes at two different air void contents, 4 and 7 percent. The laboratory performance test results showed that the performance of the newly developed bio-binder mixes is as good as or better than conventional asphalt mixes for fatigue cracking, rutting resistance, moisture sensitivity, and low-temperature cracking. These results need to be validated in field projects in order to demonstrate adequate performance for this innovative and sustainable technology for flexible pavements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made continuous usually experience a negative live load moment region over the intermediate supports. Conventional thinking dictates that sufficient reinforcement must be provided in this region to satisfy the strength and serviceability requirements associated with the tensile stresses in the deck. The American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications recommend the negative moment reinforcement (b2 reinforcement) be extended beyond the inflection point. Based upon satisfactory previous performance and judgment, the Iowa Department of Transportation (DOT) Office of Bridges and Structures (OBS) currently terminates b2 reinforcement at 1/8 of the span length. Although the Iowa DOT policy results in approximately 50% shorter b2 reinforcement than the AASHTO LRFD specifications, the Iowa DOT has not experienced any significant deck cracking over the intermediate supports. The primary objective of this project was to investigate the Iowa DOT OBS policy regarding the required amount of b2 reinforcement to provide the continuity over bridge decks. Other parameters, such as termination length, termination pattern, and effects of the secondary moments, were also studied. Live load tests were carried out on five bridges. The data were used to calibrate three-dimensional finite element models of two bridges. Parametric studies were conducted on the bridges with an uncracked deck, a cracked deck, and a cracked deck with a cracked pier diaphragm for live load and shrinkage load. The general conclusions were as follows: -- The parametric study results show that an increased area of the b2 reinforcement slightly reduces the strain over the pier, whereas an increased length and staggered reinforcement pattern slightly reduce the strains of the deck at 1/8 of the span length. -- Finite element modeling results suggest that the transverse field cracks over the pier and at 1/8 of the span length are mainly due to deck shrinkage. -- Bridges with larger skew angles have lower strains over the intermediate supports. -- Secondary moments affect the behavior in the negative moment region. The impact may be significant enough such that no tensile stresses in the deck may be experienced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the Iowa Department of Transportation has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey report (published in 1987) as the primary methods to estimate annual exceedance-probability discharge (AEPD) for small (20 square miles or less) drainage basins in Iowa. With the publication of new multi- and single-variable RREs by the U.S. Geological Survey (published in 2013), the Iowa Department of Transportation needs to determine which methods of AEPD estimation provide the best accuracy and the least bias for small drainage basins in Iowa. Twenty five streamgages with drainage areas less than 2 square miles (mi2) and 55 streamgages with drainage areas between 2 and 20 mi2 were selected for the comparisons that used two evaluation metrics. Estimates of AEPDs calculated for the streamgages using the expected moments algorithm/multiple Grubbs-Beck test analysis method were compared to estimates of AEPDs calculated from the 2013 multivariable RREs; the 2013 single-variable RREs; the 1987 single-variable RREs; the TR-55 rainfall-runoff model; and the Iowa Runoff Chart. For the 25 streamgages with drainage areas less than 2 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the TR-55 method for flood regions 1 and 3 (published in 2013) and by using the 1987 single-variable RREs for flood region 2 (published in 2013). For drainage basins with areas between 2 and 20 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the 1987 single-variable RREs for the Southern Iowa Drift Plain landform region and for flood region 3 (published in 2013), by using the 2013 multivariable RREs for the Iowan Surface landform region, and by using the 2013 or 1987 single-variable RREs for flood region 2 (published in 2013). For all other landform or flood regions in Iowa, use of the 2013 single-variable RREs may provide the best overall accuracy and the least bias. An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1–4 from the 1987 single-variable RREs and for flood regions 1–3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present, there is little fundamental guidance available to assist contractors in choosing when to schedule saw cuts on joints. To conduct pavement finishing and sawing activities effectively, however, contractors need to know when a concrete mixture is going to reach initial set, or when the sawing window will open. Previous research investigated the use of the ultrasonic pulse velocity (UPV) method to predict the saw-cutting window for early entry sawing. The results indicated that the method has the potential to provide effective guidance to contractors as to when to conduct early entry sawing. The aim of this project was to conduct similar work to observe the correlation between initial setting and conventional sawing time. Sixteen construction sites were visited in Minnesota and Missouri over a two-year period. At each site, initial set was determined using a p-wave propagation technique with a commercial device. Calorimetric data were collected using a commercial semi-adiabatic device at a majority of the sites. Concrete samples were collected in front of the paver and tested using both methods with equipment that was set up next to the pavement during paving. The data collected revealed that the UPV method looks promising for early entry and conventional sawing in the field, both early entry and conventional sawing times can be predicted for the range of mixtures tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With over 68 thousand miles of gravel roads in Iowa and the importance of these roads within the farm-to-market transportation system, proper water management becomes critical for maintaining the integrity of the roadway materials. However, the build-up of water within the aggregate subbase can lead to frost boils and ultimately potholes forming at the road surface. The aggregate subbase and subgrade soils under these gravel roads are produced with material opportunistically chosen from local sources near the site and, many times, the compositions of these sublayers are far from ideal in terms of proper water drainage with the full effects of this shortcut not being fully understood. The primary objective of this project was to provide a physically-based model for evaluating the drainability of potential subbase and subgrade materials for gravel roads in Iowa. The Richards equation provided the appropriate framework to study the transient unsaturated flow that usually occurs through the subbase and subgrade of a gravel road. From which, we identified that the saturated hydraulic conductivity, Ks, was a key parameter driving the time to drain of subgrade soils found in Iowa, thus being a good proxy variable for accessing roadway drainability. Using Ks, derived from soil texture, we were able to identify potential problem areas in terms of roadway drainage . It was found that there is a threshold for Ks of 15 cm/day that determines if the roadway will drain efficiently, based on the requirement that the time to drain, Td, the surface roadway layer does not exceed a 2-hr limit. Two of the three highest abundant textures (loam and silty clay loam), which cover nearly 60% of the state of Iowa, were found to have average Td values greater than the 2-hr limit. With such a large percentage of the state at risk for the formation of boils due to the soil with relatively low saturated hydraulic conductivity values, it seems pertinent that we propose alternative design and/or maintenance practices to limit the expensive repair work in Iowa. The addition of drain tiles or French mattresses my help address drainage problems. However, before pursuing this recommendation, a comprehensive cost-benefit analysis is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most local agencies in Iowa currently make their pavement treatment decisions based on their limited experience due primarily to lack of a systematic decision-making framework and a decision-aid tool. The lack of objective condition assessment data of agency pavements also contributes to this problem. This study developed a systematic pavement treatment selection framework for local agencies to assist them in selecting the most appropriate treatment and to help justify their maintenance and rehabilitation decisions. The framework is based on an extensive literature review of the various pavement treatment techniques in terms of their technical applicability and limitations, meaningful practices of neighboring states, and the results of a survey of local agencies. The treatment selection framework involves three different steps: pavement condition assessment, selection of technically feasible treatments using decision trees, and selection of the most appropriate treatment considering the return-on-investment (ROI) and other non-economic factors. An Excel-based spreadsheet tool that automates the treatment selection framework was also developed, along with a standalone user guide for the tool. The Pavement Treatment Selection Tool (PTST) for Local Agencies allows users to enter the severity and extent levels of existing distresses and then, recommends a set of technically feasible treatments. The tool also evaluates the ROI of each feasible treatment and, if necessary, it can also evaluate the non-economic value of each treatment option to help determine the most appropriate treatment for the pavement. It is expected that the framework and tool will help local agencies improve their pavement asset management practices significantly and make better economic and defensible decisions on pavement treatment selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this project was to evaluate low-cost measures to reduce speeds on high-crash horizontal curves. The researchers evaluated two low-cost treatments in Iowa to determine their effectiveness in reducing speeds on rural two-lane roadways. This report summarizes how the research team selected sites and collected data, and the results. The team selected six sites. Retroreflective post treatments were added to existing chevrons at four sites and on-pavement curve markings were added at two sites. The researchers collected speed data before and after installation of the two treatments. The study compared several speed metrics to assess the effectiveness of the treatments. Overall, both were moderately effective in reducing speeds. The most significant impact of the treatments was in reducing the percentage of vehicles traveling over the posted or advisory speed by 5, 10, 15, or 20 or more mph. This result suggests that the treatments are most effective in reducing high-end speeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This handbook provides a broad, easy to understand reference for temporary traffic control in work zones, addressing the safe and efficient accommodation of all road users: motorists, bicyclists, pedestrians, and those with special needs. When impacting a pedestrian facility, provide ten calendar days advance notification to the local jurisdiction and the National Federation of the Blind of Iowa (www.nfbi.org). The information presented is based on standards and guidance in the 2009 Edition of the Manual on Uniform Traffic Control Devices (MUTCD). References to the MUTCD sign designations in this handbook are shown in parentheses, e.g. (W20-1). Not all the recommendations in this handbook will apply to every circumstance faced by local agencies, and each unique situation may not be addressed. Modifications of the typical applications in this handbook will be required to adapt to specific field conditions. Therefore, use engineering judgment, seeking the advice of experienced professionals and supervisors in difficult and complex interpretations. This handbook can be used as a reference for temporary traffic control in work zones on all city or county roadways. However, always check contract documents and local agency requirements for any pertinent modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is the final product of a two-year study that began October 1, 2013. In addition to the funding provided for this study by the Iowa Highway Research Board and the Iowa Department of Transportation (TR-669), the project was also funded by the U.S. Army Corps of Engineers and the U.S. Geological Survey. The report was published as an online report on January 4, 2016. The report is available online at http://dx.doi.org/10.3133/ofr20151214 . The main body of the report provides a description of the statistics presented for the streamgages and an explanation of the streamgage summaries, also included is a discussion of the USGS streamgage network in Iowa. Individual streamgage summaries are available as links listed in table 1, or all 184 streamgage summaries are available in a zipped file named “Streamgage Summaries.”

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What follows are the refined guidelines from the Thin Maintenance Surface: Phase II Report. For that report, test sections were created and monitored along with some existing test sections. From the monitoring and evaluation of these test sections, literature reviews, and the experience and knowledge of the authors, the following guidelines were created. More information about thin maintenance surfaces and their uses can be found in the above-mentioned report.