992 resultados para Fc receptor
Resumo:
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are a significant health concern, exacerbated by the rapid emergence of multidrug resistant strains refractory to antibiotic treatment. P fimbriae are strongly associated with upper urinary tract colonization due to specific binding to α-D-galactopyranosyl-(1-4)-β-D-galactopyranoside receptors in the kidneys. Thus, inhibiting P-fimbrial adhesion may reduce the incidence of UPEC-mediated UTI. E. coli 83972 is an asymptomatic bacteriuria isolate successfully used as a prophylactic agent to prevent UTI in human studies. We constructed a recombinant E. coli 83972 strain displaying a surface-located oligosaccharide P fimbriae receptor mimic that bound to P-fimbriated E. coli producing any of the 3 PapG adhesin variants. The recombinant strain, E. coli 83972:: lgtCE, impaired P fimbriae–mediated adhesion to human erythrocytes and kidney epithelial cells. Additionally, E. coli 83972::lgtCE impaired urine colonization by UPEC in a mouse UTI model, demonstrating its potential as a prophylactic agent to prevent UTI.
Resumo:
Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.
Resumo:
Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCc1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.
Resumo:
We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24 h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle,17 beta-estradiol (17 beta-E2,1 nM), oestrogen receptor (ER) antagonist ICI 164.384 (40 nM), and 4-OH-tamoxifen (40 nM), raloxifene (4 nM), lasofoxifene (4 nM)and acolbifene (4 nM). Protein expression of ER alpha, ER beta 1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17 beta-E2 increased the fraction of Ki-67 positive cells (p < 0.001) by 55% in glands compared to the control. Raloxifene (4 nM) increased (p < 0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p < 0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. Methods A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. Results Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). Conclusions Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.
Resumo:
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.
Resumo:
The novel pyrazolo[3,4-d]pyrimidine compound GU285 (4-amino-6-alpha-carbamoylethylthio-1- phenylpyrazolo[3,4-d]pyrimidine, CAS 134896-40-5) was examined for its ability (1) to inhibit binding of adenosine (ADO) receptor ligands in rat brain membranes, (2) to antagonise functional responses to ADO agonists in rat right and left atria and coronary resistance vessels, and (3) to reduce the fall in heart rate and arterial blood pressure produced by the ADO A1 agonist N6-cyclopentyladenosine (CPA) in the intact, anaesthetized rat. GU285 competitively inhibited binding of the ADO A1 agonist [3H]-R-N6-phenylisopropyladenosine (R-PIA) yielding a Ki value of 11 (7-18) nmol.l-1 (geometric mean +/- 95% Cl). When assayed against the ADO A2A selective agonist [3H]-2-[p-(2-carboxyethyl)- phenethylamino]-5'-N-ethylcarboxamidoadenosine, (CGS21680), a Ki of 15 (10-24) nmol.l-1 was obtained. In spontaneously beating right atria, GU285 competitively antagonized negative chronotropic effects of R-PIA with a pA2 of 8.7 +/- 0.3 and in electrically paced left atria, GU285 competitively antagonized negative inotropic effects of R-PIA with a pA2 of 9.0 +/- 0.1. In the potassium-arrested, perfused rat heart GU285 (1 mumol.l-1) antagonized only the high sensitivity, ADO A2B mediated component of the biphasic relaxation of the coronary vasculature produced by NECA. The low sensitivity component was unchanged. GU285 (1 mumol.kg-1) antagonized the negative chronotropic and hypotensive effects of the adenosine A1 agonist CPA in anaesthetized rats, producing a 10-fold rightward shift in the dose-response relationship. These data demonstrate that in the rat, GU285 is a potent, non-selective adenosine receptor antagonist that maintains its activity in vivo.
Resumo:
Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.
Resumo:
Background There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case–control studies. We conducted searches of the literature published up to January 2013 in MEDLINE using the PubMed search engine. Individual data on 8,430 cases and 14,008 controls from six case–control studies of an all Caucasian population were evaluated for three ghrelin gene (GHRL; rs696217, rs4684677, rs2075356) and one ghrelin receptor (GHSR; rs572169) polymorphism in breast cancer, esophageal cancer, colorectal cancer and non-Hodgkins lymphoma. Results In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). Conclusions This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.