933 resultados para FRET, siRNA, integrity, live cell imaging
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde
Resumo:
Protease-activated receptor; c-Jun N-terminal kinase (JNK); thrombin; neuroprotection; siRNA
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
The predominant clinical and radiological features of Langerhans' cell histiocytosis (LCH) in children are due to osseous involvement. Extra-osseous disease is far less common, occurring in association with bone disease or in isolation; nearly all anatomical sites may be affected and in very various combinations. The following article is based on a multicentre review of 31 children with extra-osseous LCH. The objective is to summarise the diverse possibilities of organ involvement. The radiological manifestations using different imaging modalities are rarely pathognomonic on their own. Nevertheless, familiarity with the imaging findings, especially in children with systemic disease, may be essential for early diagnosis.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.
Resumo:
AIM: The first pathogenetic step in multiple myeloma is the emergence of a limited number of clonal plasma cells, clinically known as monoclonal gammopathy of undetermined significance (MGUS). Patients with MGUS do not have symptoms or end-organ damage but they do have a 1% annual risk of progression to multiple myeloma or related malignant disorders. With progression of MGUS to multiple myeloma, complex genetic events occur in the neoplastic plasma cell. Karyotyping and fluorescence in-situ hybridization (FISH) were shown to be of prognostic value in patients with multiple myeloma. Tc-sestamibi imaging reflects myeloma disease activity in bone marrow with very high sensitivity and specificity predicting disease evolution. This study was undertaken to evaluate the role of Tc-sestamibi imaging and cytogenetic analysis in prognosis prediction of MGUS and multiple myeloma. METHODS: We enrolled 30 consecutive patients with a confirmed diagnosis of multiple myeloma or MGUS. Bone marrow biopsy and biochemical staging according to the International Staging System (ISS) were performed in all cases. Karyotype analysis and FISH were performed in 11 of 12 patients with MGUS and in 17 of 18 patients with multiple myeloma having adequate metaphases. RESULTS: The karyotype was abnormal in four of 11 MGUS and in six of 17 multiple myeloma. Abnormalities of chromosome 13 were present in one case of MGUS and in six cases of multiple myeloma whereas the involvement of immunoglobulin was observed in one case of multiple myeloma. An abnormal FISH panel was found in four MGUS and nine multiple myeloma patients. All patients with MGUS showed a normal MIBI scan (score 0). Among patients with multiple myeloma only three, all with ISS stage I, showed a normal scan while a positive scan was obtained in others (score range, 1-7). The MIBI uptake was strongly related to the bone marrow plasma cell infiltration and to cytogenetic abnormalities. Particularly, a MIBI uptake score above 5 identified patients with poor prognosis encompassing all stage III multiple myeloma and three of seven stage II multiple myeloma. On the other hand all stage I and II patients having a MIBI score less than 5 showed a good prognosis. CONCLUSION: Both cytogenetic analysis and a MIBI scan add no relevant prognostic information to the ISS in patients with stage I and III multiple myeloma. The MIBI scan was of prognostic value in stage II multiple myeloma patients. Additionally, MIBI imaging may be useful to guide bone marrow biopsy in order to obtain adequate samples for cytogenetic analysis.
Resumo:
Multidetector row computed tomography (MDCT) is the imaging modality of reference for the diagnosis of bronchiectasis. MDCT may also detect a focal stenosis, a tumor or multiple morphologic abnormalities of the bronchial tree. It may orient the endoscopist towards the abnormal bronchi, and in all cases assess the extent of the bronchial lesions. The CT findings of bronchial abnormalities include anomalies of bronchial division and origin, bronchial stenosis, bronchial wall thickening, lumen dilatation, and mucoid impaction. The main CT features of bronchiectasis are increased bronchoarterial ratio, lack of bronchial tapering, and visibility of peripheral airways. Other bronchial abnormalities include excessive bronchial collapse at expiration, outpouchings and diverticula, dehiscence, fistulas, and calcifications.
Resumo:
In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.
Resumo:
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.
Resumo:
Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.
Resumo:
Objective: To demonstrate the incidence, time course, predisposing factor and reversibility of neurotoxicity in children with brain tumors treated with high dose busulfan-thiotepa with autologous stem cell transplantation (ASCT) and radiation therapy in our institutional experience.Materials and Methods: We performed a retrospective analysis of prospectively collected data. Between May 1988 and May 2007, 110 patients, median age 3.6 years (range, 1 months-15.3 years), with brain tumors were treated with surgical intervention and conventional chemotherapy. All patients received one course of high-dose busulfan-thiotepa with stem cell rescue, followed or preceded by radiotherapy.Results: Twenty-three patients (21%) developed neuroradiological abnormalities on follow-up imaging studies at a median time of 9.2 months (range, 5.6-17.3 months) after day 0 of ASCT. All MRI-lesions appeared in patients receiving radiotherapy after ASCT and were localized inside the 50-55 Gy isodoses. They disappeared in 14 of 23 patients with a median time of 8 months (range, 3-17 months). The presence of MRI-abnormalities was a favorable prognostic factor for overall survival on univariate analysis (hazard ratio: 0.12, 95% confidence interval [0.04, 0.33]), with a 5-year overall survival in patients with MRI-abnormalities of 84% (95% CI, 62-94), comparedto 27% (95% CI, 19-37) in those without lesions. On multivariate analysis, the presence of MRI-abnormalities was an independent prognostic factor for overall survival.Conclusion: MRI-detectable brain abnormalities are common early findings in children treated with high-dose busulfan-thiotepa followed by radiation therapy, and may mimic early tumor recurrence. They are correlated with a better outcome.
Resumo:
BACKGROUND: Nitrosative stress takes place in endothelial cells (EC) during corneal acute graft rejection. The purpose of this study was to evaluate the potential role of peroxynitrite on corneal EC death. METHODS: The effect of peroxynitrite was evaluated in vivo. Fifty, 250, and 500 microM in 1.5 microL of the natural or denatured peroxynitrite in 50 microM NaOH, 50 microM NaOH alone, or balanced salt solution were injected into the anterior chamber of rat eyes (n=3/group). Corneal toxic signs after injection were assessed by slit-lamp, in vivo confocal imaging, pachymetry, and EC count. The effect of peroxynitrite was also evaluated on nitrotyrosine and leucocyte elastase inhibitor/LDNase II immunohistochemistry. Human corneas were incubated with peroxynitrite and the effect on EC viability was evaluated. A specific inducible nitric oxide synthase inhibitor (iNOS) was administered systemically in rats undergoing allogeneic corneal graft rejection and the effect on EC was evaluated by EC count. RESULTS: Rat eyes receiving as little as 50 microM peroxynitrite showed a specific dose-dependent toxicity on EC. We observed an intense nitrotyrosine staining of human and rat EC exposed to peroxynitrite associated with leucocyte elastase inhibitor nuclear translocation, a noncaspase dependent apoptosis reaction. Specific inhibition of iNOS generation prevented EC death and enhanced EC survival of the grafted corneas. However, inhibition of iNOS did not have a significant influence on the incidence of graft rejection. CONCLUSION: Nitrosative stress during acute corneal graft rejection in rat eyes induces a noncaspase dependent apoptotic death in EC. Inhibition of nitric oxide production during the corneal graft rejection has protective effects on the corneal EC survival.
Resumo:
We studied the role of CD4+, CD8+, CD4- CD8- T cells and IgG anti-Leishmania after infection or vaccination in the CBA/ca mouse. Mice were either infected with L. m. mexicana promastigotes or vaccinated with parasite-membrane antigens incorporated into liposomes. Successfully vaccinated mice were used as cell-donors in adoptive transfer experiments. Naive, syngeneic recipients received highly-enriched CD4+, CD8+ or CD4- CD8- T cells from those two set of donors and challenged with live parasites. Our results showed that, both CD4+ and CD8+ T cells from infected or vaccinated donors conferred significant disease-resistance to naive recipients. In addition, adoptive transfer of CD4- CD8- T cells from vaccinated donors significantly delayed lesion growth in recipient mice. We concluded that vaccination of CBA mice correlates with the induction of protective CD4+, CD8+ and CD4- CD8- T cells and the synthesis of IgG anti-Leishmania.
Resumo:
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.