948 resultados para FLOW OF WATER
Resumo:
One of the distinctive characteristics of the water supply system of Greater Amman, the capital of Jordan, is that it has been based on a regime of rationing since 1987, with households receiving water once a week for various durations. This reflects the fact that while Amman's recent growth has been phenomenal, Jordan is one of the ten most water-scarce nations on earth. Amman is highly polarised socio-economically, and by means of household surveys conducted in both high- and low-income divisions of the city, the aim has been to provide detailed empirical evidence concerning the storage and use if water, the strategies used by households to manage water and overall satisfactions with water supply issues, looking specifically at issues of social equity. The analysis demonstrates the social costs of water rationing and consequent household management to be high, as well as emphasising that issues of water quality are of central importance to all consumers.
Resumo:
A fast radiative transfer model (RTM) to compute emitted infrared radiances for a very high resolution radiometer (VHRR), onboard the operational Indian geostationary satellite Kalpana has been developed and verified. This work is a step towards the assimilation of Kalpana water vapor (WV) radiances into numerical weather prediction models. The fast RTM uses a regression‐based approach to parameterize channel‐specific convolved level to space transmittances. A comparison between the fast RTM and the line‐by‐line RTM demonstrated that the fast RTM can simulate line‐by‐line radiances for the Kalpana WV channel to an accuracy better than the instrument noise, while offering more rapid radiance calculations. A comparison of clear sky radiances of the Kalpana WV channel with the ECMWF model first guess radiances is also presented, aiming to demonstrate the fast RTM performance with the real observations. In order to assimilate the radiances from Kalpana, a simple scheme for bias correction has been suggested.
Resumo:
The freshwaters of the Mersey Basin have been seriously polluted for over 200 years. Anecdotal evidence suggests that the water quality was relatively clean before the start of the Industrial Revolution. The development of the cotton and chemical industries increased the pollution load to rivers, and consequently a decline in biota supported by the water was observed. Industrial prosperity led to a rapid population increase and an increase in domestic effluent. Poor treatment of this waste meant that it was a significant pollutant. As industry intensified during the 19th century, the mix of pollutants grew more complex. Eventually, in the 1980s, the government acknowledged the problem and more effort was made to improve the water quality. Knowledge of social and economic history, as well as anecdotal evidence, has been used in this paper to extrapolate the changes in water quality that occurred. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Structure is an important physical feature of the soil that is associated with water movement, the soil atmosphere, microorganism activity and nutrient uptake. A soil without any obvious organisation of its components is known as apedal and this state can have marked effects on several soil processes. Accurate maps of topsoil and subsoil structure are desirable for a wide range of models that aim to predict erosion, solute transport, or flow of water through the soil. Also such maps would be useful to precision farmers when deciding how to apply nutrients and pesticides in a site-specific way, and to target subsoiling and soil structure stabilization procedures. Typically, soil structure is inferred from bulk density or penetrometer resistance measurements and more recently from soil resistivity and conductivity surveys. To measure the former is both time-consuming and costly, whereas observations made by the latter methods can be made automatically and swiftly using a vehicle-mounted penetrometer or resistivity and conductivity sensors. The results of each of these methods, however, are affected by other soil properties, in particular moisture content at the time of sampling, texture, and the presence of stones. Traditional methods of observing soil structure identify the type of ped and its degree of development. Methods of ranking such observations from good to poor for different soil textures have been developed. Indicator variograms can be computed for each category or rank of structure and these can be summed to give the sum of indicator variograms (SIV). Observations of the topsoil and subsoil structure were made at four field sites where the soil had developed on different parent materials. The observations were ranked by four methods and indicator and the sum of indicator variograms were computed and modelled for each method of ranking. The individual indicators were then kriged with the parameters of the appropriate indicator variogram model to map the probability of encountering soil with the structure represented by that indicator. The model parameters of the SIVs for each ranking system were used with the data to krige the soil structure classes, and the results are compared with those for the individual indicators. The relations between maps of soil structure and selected wavebands from aerial photographs are examined as basis for planning surveys of soil structure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
Resumo:
A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.