254 resultados para FINGERS
Resumo:
The relative length of the second and fourth fingers (the 2D:4D ratio) has been taken to be an indicator of prenatal exposure to testosterone, and hence possibly relevant to sexual orientation and other sex-differentiated behaviors. Studies have reported a difference in this ratio between Caucasian males in Britain and in the U.S.: higher average 2D:4D ratios were obtained in Britain. This raises the question of whether differences among different Caucasian gene pools were responsible or whether some environmental variable associated with latitude might be involved (e.g., exposure to sunlight or different day-length patterns). This question was explored by examining 2D:4D ratios for an Australian adolescent sample. The Australians were predominantly of British ancestry, but lived at distances from the equator more like those of the U.S. studies. The Australian 2D:4D ratios resembled those in Britain rather than those in the U.S., tending to exclude hypotheses related to latitude and making differences in gene pools a plausible explanation.
Resumo:
Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5'-GTC-3', by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers.
Resumo:
It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.
Resumo:
Protein-DNA interactions are an essential feature in the genetic activities of life, and the ability to predict and manipulate such interactions has applications in a wide range of fields. This Thesis presents the methods of modelling the properties of protein-DNA interactions. In particular, it investigates the methods of visualising and predicting the specificity of DNA-binding Cys2His2 zinc finger interaction. The Cys2His2 zinc finger proteins interact via their individual fingers to base pair subsites on the target DNA. Four key residue positions on the a- helix of the zinc fingers make non-covalent interactions with the DNA with sequence specificity. Mutating these key residues generates combinatorial possibilities that could potentially bind to any DNA segment of interest. Many attempts have been made to predict the binding interaction using structural and chemical information, but with only limited success. The most important contribution of the thesis is that the developed model allows for the binding properties of a given protein-DNA binding to be visualised in relation to other protein-DNA combinations without having to explicitly physically model the specific protein molecule and specific DNA sequence. To prove this, various databases were generated, including a synthetic database which includes all possible combinations of the DNA-binding Cys2His2 zinc finger interactions. NeuroScale, a topographic visualisation technique, is exploited to represent the geometric structures of the protein-DNA interactions by measuring dissimilarity between the data points. In order to verify the effect of visualisation on understanding the binding properties of the DNA-binding Cys2His2 zinc finger interaction, various prediction models are constructed by using both the high dimensional original data and the represented data in low dimensional feature space. Finally, novel data sets are studied through the selected visualisation models based on the experimental DNA-zinc finger protein database. The result of the NeuroScale projection shows that different dissimilarity representations give distinctive structural groupings, but clustering in biologically-interesting ways. This method can be used to forecast the physiochemical properties of the novel proteins which may be beneficial for therapeutic purposes involving genome targeting in general.
Resumo:
Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations.
Resumo:
The Church of Our Blessed Redeemer Who Walked Upon the Waters is a collection of short stories about Elwyn Parker, a devout pianist who becomes a worldly car salesman. "Thirty Fingers," "My Father's Business," and "Apostate" introduce Elwyn, a saint at church and a trouble-making evangelist at school, who nevertheless finds himself in a love affair with an older woman, Sister Morrisohn. In "Captivity," Elwyn, a college freshman, experiences worldliness, then grows to resent and ultimately reject Sister Morrisohn. In "The Leap," Elwyn is back at the piano, but unemployed and unhappily married. He finds comfort only in his decade-old affair. In "The Lord of Travel," Elwyn, a car salesman, appears bereft of his former morals until he hoodwinks Ida, who reminds him of the now deceased Sister Morrisohn. Elwyn repairs Ida's car, redeeming himself in the process.
Resumo:
The task of expression undertaken by the performer falls largely on the right hand of guitarist. Aware of this fact, past and present masters have left their contributions to the development of right hand technique. It is clear, with rare exceptions, that educational and interpretative proposals, so far, have addressed the attack on the strings from the flexion of the fingers. This work, however, presents a technical resource called imalt, including in the attack action, the extension movement. Some techniques used in specific circumstances, such as the dedillo, the alzapúa, the tremulo and the rasgueado also use extension movements in the attack. They are put in perspective with the imalt providing a panoramic view of their individual characteristics. The use of imalt in the traditional guitar repertoire is exemplified in Villa Lobos, Ponce and Brouwer. Three pieces were composed for this work: Shravana, Alegoria and Vandana. Compositional techniques such as melodic contour applying and ostinato have been reviewed and used in the preparation of these compositions. A detailed record of compositional trajectory is presented. Therefore, the Model for the Compositional Process Accompaniment according Silva (2007) is used. Some events that have left the imalt in evidence are reported, as the launch and distribution of the Compact Disc (CD) Imalt, publishing scores and interviews. Finally is presented concluding comments, pointing possibilities opened up by this work.
Resumo:
In several areas of health professionals (pediatricians, nutritionists, orthopedists, endocrinologists, dentists, etc.) are used in the assessment of bone age to diagnose growth disorders in children. Through interviews with specialists in diagnostic imaging and research done in the literature, we identified the TW method - Tanner and Whitehouse as the most efficient. Even achieving better results than other methods, it is still not the most used, due to the complexity of their use. This work presents the possibility of automation of this method and therefore that its use more widespread. Also in this work, they are met two important steps in the evaluation of bone age, identification and classification of regions of interest. Even in the radiography in which the positioning of the hands were not suitable for TW method, the identification algorithm of the fingers showed good results. As the use AAM - Active Appearance Models showed good results in the identification of regions of interest even in radiographs with high contrast and brightness variation. It has been shown through appearance, good results in the classification of the epiphysis in their stages of development, being chosen the average epiphysis finger III (middle) to show the performance. The final results show an average percentage of 90% hit and misclassified, it was found that the error went away just one stage of the correct stage.
Resumo:
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Resumo:
This chapter explores geographies of gentrification and resistance in relation to the monstrous through the lens of street-art in post-Olympic London. It takes as a geographic case study Hackney Wick, which has for a long time been a bastion of alternative and creative living due to cheap rents in large, ex-industrial warehouse spaces. The artistic sociality of the area is imbued within its landscape, as prolific street artists have adorned ex-industrial warehouses and canal-side walls with graffiti and murals. Since the announcement of the 2012 Olympic Games, the area has been a site of intense political and aesthetic contestation. The post-Olympic legacy means that the area has been earmarked for redevelopment, with current residents facing the possibility of joining thousands already displaced by the games. The anxiety of dispossession is reflected by monstrous characters and sinister disembodied teeth, eyes and fingers embedded within the landscape, painted by local artists. Using geographically sensitive mobile and visual methodology to document the landscape and artwork, the chapter analyses and interprets the monstrous themes using a range of theorists including Mikhail Bakhtin, Georges Bataille and Nick Land. I argue that monstrous street-art lays visible claim to public territory for aesthetic purposes at odds with the visions of redevelopers and the needs of capital. Whilst street-art and graffiti do not fit easily within frameworks of organized political resistance or collective social movements, they operate as a kind of epistemological transgression that triggers transformative affects in the viewer. This creates conditions for pedagogies of resistance to gentrification by expressing and mobilizing political affects such as anger and anxiety, raising awareness of geographical politics, and encouraging the viewer to question the status quo of the built environment.
Resumo:
Soft robots are robots made mostly or completely of soft, deformable, or compliant materials. As humanoid robotic technology takes on a wider range of applications, it has become apparent that they could replace humans in dangerous environments. Current attempts to create robotic hands for these environments are very difficult and costly to manufacture. Therefore, a robotic hand made with simplistic architecture and cheap fabrication techniques is needed. The goal of this thesis is to detail the design, fabrication, modeling, and testing of the SUR Hand. The SUR Hand is a soft, underactuated robotic hand designed to be cheaper and easier to manufacture than conventional hands. Yet, it maintains much of their dexterity and precision. This thesis will detail the design process for the soft pneumatic fingers, compliant palm, and flexible wrist. It will also discuss a semi-empirical model for finger design and the creation and validation of grasping models.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Resumo:
Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through vapour intrusion (VI). Most conceptual and numerical models of VI assume that the transport of volatile organic compounds (VOCs) is a diffusion-limited process. Recently, alternate conditions have been identified that could lead to faster transport, including the presence of preferential pathways and methanogenic gas production. In this study, an additional mechanism that could lead to faster transport was investigated: bubble-facilitated VOC transport from LNAPL smear zones. A laboratory investigation was preformed using pentane in one-dimensional laboratory columns and two-dimensional visualization experiments. Results of the column experiments showed that average VOC mass fluxes in the bubble-facilitated columns were over two orders of magnitude greater than in the diffusion-limited columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport as bubbles expand, mobilize and are released to the vadose zone at various times during the test. The results from the visualization experiments showed gas fingers growing and mobilizing over time, which supports the findings of the column experiments. In conclusion, these results demonstrate the potential for bubble-facilitated VOC transport to affect mass transfer in LNAPL smear zones, and lead to increased indoor air concentrations by VI.
Resumo:
Résumé : c-Myc est un facteur de transcription (FT) dont les niveaux cellulaires sont dérégulés dans la majorité des cancers chez l’homme. En hétérodimère avec son partenaire obligatoire Max, c-Myc lie préférentiellement les séquences E-Box (CACGTG) et cause l’expression de gènes impliqués dans la biosynthèse des protéines et des ARNs, dans le métabolisme et dans la prolifération cellulaire. Il est maintenant bien connu que c-Myc exerce aussi son potentiel mitogène en liant et inhibant différents FTs impliqués dans l’expression de gènes cytostatiques. Entre autres, c-Myc est en mesure d’inhiber Miz-1, un FT comportant 13 doigts de zinc de type Cys2-His2 (ZFs) impliqué dans l’expression de plusieurs gènes régulateurs du cycle cellulaire comprenant les inhibiteurs de CDK p15[indice supérieur INK4], p21[indice supérieur CIP1] et p57[indice supérieur KIP2]. Plus récemment, il fut démontré qu’en contrepartie, Miz-1 est aussi en mesure de renverser les fonctions activatrices de c-Myc et de prévenir la prolifération de cellules cancéreuses dépendantes de c-Myc. Ces différentes observations ont mené à la suggestion de l’hypothèse intéressante que la balance des niveaux de Miz-1 et c-Myc pourrait dicter le destin de la cellule et a permis d’établir Miz-1 comme nouvelle cible potentielle pour le développement d’agents anti-cancéreux. Malgré le fait que ces deux protéines semblent centrales à la régulation du cycle cellulaire, les mécanismes moléculaires leur permettant de s’inhiber mutuellement ainsi que les déterminants moléculaires permettant leur association spécifique demeurent assez peu documentés pour le moment. De plus, la biologie structurale de Miz-1 demeure à être explorée puisque qu’aucune structure de ses 13 ZFs, essentiels à sa liaison à l’ADN, n’a été déterminée pour l’instant. Les travaux réalisés dans le cadre cette thèse visent la caractérisation structurale et biophysique de Miz-1 dans le contexte de la répression génique causée par le complexe c-Myc/Miz-1. Nous présentons des résultats d’éxpériences in vitro démontrant que Miz-1 interagit avec c-Myc via un domaine contenu entre ses ZFs 12 et 13. De plus, nous démontrons que Miz-1 et Max sont en compétition pour la liaison de c-Myc. Ces résultats suggèrent pour la permière fois que Miz-1 inhibe les activités de c-Myc en prévenant son interaction avec son partenaire obligatoire Max. De plus, ils laissent présager que que Miz-1 pourrait servir de référence pour le développement d’inhibiteurs peptidiques de c-Myc. Finalement, nous avons réalisé la caractérisation structurale et dynamique des ZFs 1 à 4 et 8 à 10 de Miz-1 et avons évalué leur potentiel de liaison à l’ADN. Les résultats obtenus, couplés à des analyses bio-informatiques, nous permettent de suggérer un modèle détaillé pour la liaison spécifique de Miz-1 à son ADN consensus récemment identifié.