311 resultados para FIBRIN
Resumo:
A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
Resumo:
A 2-year-old, female goat from Connecticut was submitted for necropsy with a 5-day history of pyrexia and intermittent neurologic signs, including nystagmus, seizures, and circling. Postmortem examination revealed suppurative meningitis. Histologic examination of the brain revealed that the meninges were diffusely infiltrated by moderate numbers of lymphocytes, macrophages, and fibrin, with scattered foci of dense neutrophilic infiltrate. Culture of pus and brainstem yielded typical mycoplasma colonies. DNA sequencing of the 16S ribosomal RNA gene revealed 99% sequence homology with Mycoplasma mycoides subspecies capri and Mycoplasma mycoides subspecies mycoides Large Colony biotype, which are genetically indistinguishable and likely to be combined as a single subspecies labeled M. mycoides subsp. capri. The present case is unusual in that not only are mycoplasma an uncommon cause of meningitis in animals, but additionally, in that all other reported cases of mycoplasma meningitis in goats, systemic lesions were also present. In the present case, meningitis was the only lesion, thus illustrating the need to consider mycoplasma as a differential diagnosis for meningitis in goats.
Resumo:
Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.
Resumo:
Impaired fibrin clot lysis is a key abnormality in diabetes and complement C3 is one protein identified in blood clots. This work investigates the mechanistic pathways linking C3 and hypofibrinolysis in diabetes using ex vivo/in vitro studies.
Resumo:
To cite this article: Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost 2013; 11: 234-44. Summary. Coagulation factor (F)XIII is best known for its role in fibrin stabilization and cross-linking of antifibrinolytic proteins to the fibrin clot. From patients with congenital FXIII deficiency, it is known that FXIII also has important functions in wound healing and maintaining pregnancy. Over the last decade more and more research groups with different backgrounds have studied FXIII and have unveiled putative novel functions for FXIII. FXIII, with its unique role as a transglutaminase among the other serine protease coagulation factors, is now recognized as a multifunctional protein involved in regulatory mechanisms and construction and repair processes beyond hemostasis with possible implications in many areas of medicine. The aim of this review was to give an overview of exciting novel findings and to highlight the remarkable diversity of functions attributed to FXIII. Of course, more research into the underlying mechanisms and (patho-)physiological relevance of the many described functions of FXIII is needed. It will be exciting to observe future developments in this area and to see if and how these interesting findings may be translated into clinical practice in the future.
Resumo:
Lesions of the rotator cuff (RC) are among the most frequent tendon injuries. In spite of the developments in both open and arthroscopic surgery, RC repair still very often fails. In order to reduce the failure rate after surgery, several experimental in vitro and in vivo therapy methods have been developed for biological improvement of the reinsertion. This article provides an overview of the current evidence for augmentation of RC reconstruction with growth factors. Furthermore, potential future therapeutic approaches are discussed. We performed a comprehensive search of the PubMed database using various combinations of the keywords "tendon," "rotator cuff," "augmentation," "growth factor," "platelet-rich fibrin," and "platelet-rich plasma" for publications up to 2011. Given the linguistic capabilities of the research team, we considered publications in English, German, French, and Spanish. We excluded literature reviews, case reports, and letters to the editor.
Resumo:
OBJECTIVE: The study was conducted to determine activation of coagulation in patients undergoing open and endovascular infrarenal abdominal aortic aneurysm repair (EVAR). METHODS: In a prospective, comparative study, 30 consecutive patients undergoing open repair (n = 15) or EVAR (n = 15) were investigated. Blood samples to determine fibrinopeptide A, fibrin monomer, thrombin-antithrombin complex, and D-dimer were taken up to 5 days postoperatively. Routine hematologic and hematochemical parameters as well as clinical data were collected. RESULTS: Both groups showed comparable demographic variables. Operating time was longer in open repair (249 +/- 77 minutes vs 186 +/- 69 minutes, P < .05). Perioperatively elevated markers of coagulation were measured in both groups. Fibrinopeptide A levels did not differ significantly between the groups (P = .55). The levels of fibrin monomer and thrombin-antithrombin complex were significantly higher in patients undergoing EVAR (P < .0001), reflecting increased thrombin activity and thrombin formation compared with open surgery. The D-dimer level did not differ significantly between the groups. These results were also valid after correction for hemodilution. CONCLUSION: These data suggest increased procoagulant activity in EVAR compared with open surgery. A procoagulant state may favor possible morbidity derived from micro- and macrovascular thrombosis, such as in myocardial infarction, multiple organ dysfunction, venous thrombosis and thromboembolism, or disseminated intravascular coagulation.
Resumo:
OBJECTIVE: To compare four different implantation modalities for the repair of superficial osteochondral defects in a caprine model using autologous, scaffold-free, engineered cartilage constructs, and to describe the short-term outcome of successfully implanted constructs. METHODS: Scaffold-free, autologous cartilage constructs were implanted within superficial osteochondral defects created in the stifle joints of nine adult goats. The implants were distributed between four 6-mm-diameter superficial osteochondral defects created in the trochlea femoris and secured in the defect using a covering periosteal flap (PF) alone or in combination with adhesives (platelet-rich plasma (PRP) or fibrin), or using PRP alone. Eight weeks after implantation surgery, the animals were killed. The defect sites were excised and subjected to macroscopic and histopathologic analyses. RESULTS: At 8 weeks, implants that had been held in place exclusively with a PF were well integrated both laterally and basally. The repair tissue manifested an architecture similar to that of hyaline articular cartilage. However, most of the implants that had been glued in place in the absence of a PF were lost during the initial 4-week phase of restricted joint movement. The use of human fibrin glue (FG) led to massive cell infiltration of the subchondral bone. CONCLUSIONS: The implantation of autologous, scaffold-free, engineered cartilage constructs might best be performed beneath a PF without the use of tissue adhesives. Successfully implanted constructs showed hyaline-like characteristics in adult goats within 2 months. Long-term animal studies and pilot clinical trials are now needed to evaluate the efficacy of this treatment strategy.
Resumo:
OBJECTIVE: Acute mental stress elicits blood hypercoagulability. Following a transactional stress model, we investigated whether individuals who anticipate stress as more threatening, challenging, and as exceeding their coping skills show greater stress reactivity of the coagulation activation marker D-dimer, indicating fibrin generation in plasma. METHODS: Forty-seven men (mean age 44 +/- 14 years; mean blood pressure [MBP] 101 +/- 12 mm Hg; mean body mass index [BMI] 26 +/- 3 kg/m(2)) completed the Primary Appraisal Secondary Appraisal (PASA) scale before undergoing the Trier Social Stress Test (combination of mock job interview and mental arithmetic task). Heart rate, blood pressure, plasma catecholamines, and D-dimer levels were measured before and after stress, and during recovery up to 60 minutes poststress. RESULTS: Hemodynamic measures, catecholamines, and D-dimer changed across all time points (p values <.001). The PASA "Stress Index" (integrated measure of transactional stress perception) correlated with total D-dimer area under the curve (AUC) between rest and 60 minutes poststress (r = 0.30, p = .050) and with D-dimer change from rest to immediately poststress (r = 0.29, p = .046). Primary appraisal (combined "threat" and "challenge") correlated with total D-dimer AUC (r = 0.37, p = .017), D-dimer stress change (r = 0.41, p = .004), and D-dimer recovery (r = 0.32, p = .042). "Challenge" correlated more strongly with D-dimer stress change than "threat" (p = .020). Primary appraisal (DeltaR(2) = 0.098, beta = 0.37, p = .019), and particularly its subscale "challenge" (DeltaR(2) = 0.138, beta = 0.40, p = .005), predicted D-dimer stress change independently of age, BP, BMI, and catecholamine change. CONCLUSIONS: Anticipatory cognitive appraisal determined the extent of coagulation activation to and recovery from stress in men. Particularly individuals who anticipated the stressor as more challenging and also more threatening had a greater fibrin stress response.
Resumo:
We evaluated the score for disseminated intravascular coagulation (DIC) recently published by the International Society for Thrombosis and Haemostasis (ISTH) in a well-defined series of sepsis patients. Thirty-two patients suffering from severe sepsis and eight patients with septic shock were evaluated following the ISTH DIC score. Fibrin monomer and D-dimer were chosen as fibrin-related markers (FRM), respectively. DIC scores for nonsurvivors (n = 13) as well as for septic shock patients were higher (P < 0.04) compared with survivors and patients with severe sepsis, respectively. Using fibrin monomer and D-dimer, 30 and 25% of patients suffered from overt DIC. Overt DIC was associated with significantly elevated thrombin-antithrombin complexes and plasminogen activator inhibitor type-1 levels as well as with significantly lower factor VII clotting activity. Patients with overt DIC had a significantly higher risk of death and of developing septic shock. Since more than 95% of the sepsis patients had elevated FRM, the DIC score was strongly dependent on prolongation of the prothrombin time and platelet counts. The ISTH DIC score is useful to identify patients with coagulation activation, predicting fatality and disease severity. It mainly depends on the prolongation of the prothrombin time and platelet counts.
Resumo:
Plasminogen activator inhibitors (PAIs) play critical roles in regulating cellular invasion and fibrinolysis. An increase in the ratio of PAI-1/PAI-2 in placenta and maternal serum is suggested to result in excessive intervillous fibrin deposition and placental infarction in pregnancies complicated by preeclampsia (PE) and intrauterine growth restriction (IUGR). In the current study we used dual (maternal and fetal) perfusion of human term placentas to examine the release of PAIs to the intervillous space. ELISA revealed a significant time-dependent increase in total PAI-1 levels in maternal perfusate (MP) between 1 and 7h of perfusion. Conversely, PAI-2 levels decreased resulting in a 3-fold increase in the PAI-1/PAI-2 ratio in MP. Levels of PAI-1, but not PAI-2, in placental tissue extracts increased during perfusion. In perfusions carried out with xanthine and xanthine oxidase (X + XO), compounds used to generate reactive oxygen species (ROS), no time-dependent increase in total PAI-1 levels was observed. In addition, X + XO treatment promoted a 3-fold reduction in active PAI-1 levels in MP, indicating that ROS decrease PAI-1 release to MP. The finding of a time-dependent change in patterns of PAI expression and response to ROS indicates the utility of dual perfusion as a model to dissect mechanism(s) promoting aberrant fibrinolysis in pregnancies complicated by PE and IUGR.
Resumo:
Sprouting of new capillaries from pre-existing blood vessels is a hallmark of angiogenesis during embryonic development and solid tumor growth [1]. In addition to the vascular endothelial growth factor (VEGF) and its receptors, the Tie receptors and their newly identified ligands, the angiopoietins, have been implicated in the control of blood vessel formation [2,3]. Although 'knockouts' of the gene encoding the Tie2 receptor, or its activating ligand angiopoietin-1 (Ang1), result in embryonic lethality in mice due to an absence of remodeling and sprouting of blood vessels [4,5], biological activity in vitro has not yet been described for this receptor-ligand system. In an assay in which a monolayer of endothelial cells were cultured on microcarrier beads and embedded in three-dimensional fibrin gels, recombinant Ang1 (0.5-10 nM) induced the formation of capillary sprouts in a dose-dependent manner that was completely inhibited by soluble Tie2 receptor extracellular domains. In contrast with VEGF, which also induced sprouting of capillaries, Ang1 was only very weakly mitogenic for endothelial cells. Suboptimal concentrations of VEGF and Ang1 acted synergistically to induce sprout formation. Thus, the biological activity of Ang1 in vitro is consistent with the specific phenotype of mice deficient in Tie2 or Ang1. The data suggest that, like in other developmental systems, blood vessel formation requires a hierarchy of master-control genes in which VEGF and angiopoietins, along with their receptors, are amongst the most important regulators.
Resumo:
OBJECTIVE: In sepsis, activation of coagulation and inhibition of fibrinolysis lead to microvascular thrombosis. Thus, clot stability might be a critical issue in the development of multiple organ dysfunction syndrome. Activated FXIII (FXIIIa) forms stable fibrin clots by covalently cross-linking fibrin monomers. Therefore, we investigated the impact of FXIII antigen and activity levels on disease severity and fatality in sepsis patients. PATIENTS AND METHODS: FXIII subunit A (FXIIIA) and FXIII cross-linking activity (FXIIICA) were measured in 151 controls, in 32 patients with severe sepsis and 8 with septic shock. In addition, FXIII subunit B (FXIIIB) was measured in the sepsis patients. Moreover, clotting parameters were determined. RESULTS: Patients suffering from sepsis (n=40) had significantly (p<0.005) lower FXIIIA levels (median [range]: 36.5% [8.8-127.4%]) and FXIIICA levels (76.5% [9.4-266%]) as compared to healthy controls (n=151, 119% [31.3-283.2] and 122.4% [40.6-485.3], respectively). No difference in FXIIIA, FXIIIB and FXIIICA levels between survivors and non-survivors, nor between patients with severe sepsis and septic shock was found. The specific activity of FXIII (FXIIICA/FXIIIA, SA(FXIII)) was significantly (p<0.001) higher in sepsis patients (2.0 [0.8-5.3]) as compared to healthy controls (1.0 [0.4-5.1]). SA(FXIII) significantly (p<0.05) increased with fatality (non-survivors [n=13] vs. survivors [n=27]: 3.3 [1.2-5.0] vs. 1.9 [0.8-5.3]) and disease severity (septic shock vs. severe sepsis: 3.4 [1.8-4.3] vs. 1.9 [0.8-5.3]). CONCLUSION: We show decreased FXIIICA and FXIIIA levels, but higher SA(FXIII) in sepsis as compared to controls. Increased SA(FXIII) correlates with disease severity and fatality in sepsis patients.
Resumo:
Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.
Resumo:
Adverse cardiovascular events are the consequence of a molecular chain reaction at the site of vulnerable plaques. Key players are platelets and coagulation factors that are activated following plaque rupture and often cause arterial obstruction. Thrombin, a plasma serine protease, plays a role in hemostasis of coagulation as well as in thrombosis and cell growth, leading to restenosis and atherosclerosis. Interesting and promising new molecules, the direct thrombin inhibitors, have been shown to be as effective as the combination of glycoprotein IIb-IIIa inhibitors and heparin for the prevention of arterial thrombosis. Until recently, direct thrombin inhibitors could be applied only parenterally; therefore, therapy was limited to hospitalized patients. As a result of recent drug development, orally active direct thrombin inhibitors are now available and have been evaluated for the long-term treatment of venous thrombosis and arterial fibrillation. Due to their specific pharmacodynamic characteristics by binding directly to thrombin--and thus inhibiting platelet aggregation and fibrin generation--these novel drugs may also have therapeutic potential for the treatment of atherothrombotic disease and its complications such as myocardial infarction, stroke or limb ischemia.