879 resultados para Extinction Times
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae (Glis and Glirulus) and Leithiinae (Dryomys, Eliomys and Muscardinus) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus, and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiuros, Glis, Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicas is suggested to be a relict of this ancient diversification during the warm period.
Resumo:
The Permo-Triassic crisis was a major turning point in geological history. Following the end-Guadalupian extinction phase, the Palaeozoic biota underwent a steady decline through the Lopingian (Late Permian), resulting in their decimation at the level that is adopted as the Permian-Triassic boundary (PTB). This trend coincided with the greatest Phanerozoic regression. The extinction at the end of the Guadalupian and that marking the end of the Permian are therefore related. The subsequent recovery of the biota occupied the whole of the Early Triassic. Several phases of perturbations in [delta]13Ccarb occurred through a similar period, from the late Wuchiapingian to the end of the Early Triassic. Therefore, the Permian-Triassic crisis was protracted, and spanned Late Permian and Early Triassic time. The extinction associated with the PTB occurred in two episodes, the main act with a prelude and the epilogue. The prelude commenced prior to beds 25 and 26 at Meishan and coincided with the end-Permian regression. The main act itself happened in beds 25 and 26 at Meishan. The epilogue occurred in the late Griesbachian and coincided with the second volcanogenic layer (bed 28) at Meishan. The temporal distribution of these episodes constrains the interpretation of mechanisms responsible for the greatest Phanerozoic mass extinction, particularly the significance of a postulated bolide impact that to our view may have occurred about 50,000[no-break space]Myr after the prelude. The prolonged and multi-phase nature of the Permo-Triassic crisis favours the mechanisms of the Earth's intrinsic evolution rather than extraterrestrial catastrophe. The most significant regression in the Phanerozoic, the palaeomagnetic disturbance of the Permo-Triassic Mixed Superchron, widespread extensive volcanism, and other events, may all be related, through deep-seated processes that occurred during the integration of Pangea. These combined processes could be responsible for the profound changes in marine, terrestrial and atmospheric environments that resulted in the end-Permian mass extinction. Bolide impact is possible but is neither an adequate nor a necessary explanation for these changes.
Resumo:
The objectives of this research were the collection and evaluation of the data pertaining to the importance of concrete mixing time on air content and distribution, consolidation and workability for pavement construction. American Society for Testing and Materials (ASTM) standard C 94 was used to determine the significance of the mixing time on the consistency of the mix being delivered and placed on grade. Measurements of unit weight, slump, air content, retained coarse aggregate and compressive strength were used to compare the consistency of the mix in the hauling unit at the point of mixing and at the point placement. An analysis of variance was performed on the data collected from the field tests. Results were used to establish the relationship between selected mixing time and the portland cement concrete properties tested. The results were also used to define the effect of testing location (center and side of truck, and on the grade) on the concrete properties. Compressive strength test concepts were used to analyze the hardened concrete pavement strength. Cores were obtained at various locations on each project on or between vibrator locations to evaluate the variance in each sample, between locations, and mixing times. A low-vacuum scanning electron microscope (SEM) was used to study air void parameters in the concrete cores. Combining the data from these analysis thickness measurements and ride in Iowa will provide a foundation for the formulation of a performance based matrix. Analysis of the air voids in the hardened concrete provides a description of the dispersion of the cemtitious materials (specifically flyash) and air void characteristics in the pavement. Air void characteristics measured included size, shape and distribution.
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
Newsletter produced by Deaf Services Commission of Iowa
Resumo:
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (similar to 80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO(2) and SO(2) gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment. Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for similar to 14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.
Resumo:
OBJECT: To determine the single spin-echo T 2 relaxation times of uncoupled and J-coupled metabolites in rat brain in vivo at 14.1 T and to compare these results with those previously obtained at 9.4 T. MATERIALS AND METHODS: Measurements were performed on five rats at 14.1 T using the SPECIAL sequence and TE-specific basis-sets for LCModel analysis. RESULTS AND CONCLUSION: The T 2 of singlets ranged from 98 to 148 ms and T 2 of J-coupled metabolites ranged from 72 ms (glutamate) to 97 ms (myo-inositol). When comparing the T 2s of the metabolites measured at 14.1 T with those previously measured at 9.4 T, a decreasing trend was found (p < 0.0001). We conclude that the modest shortening of T 2 at 14.1 T has a negligible impact on the sensitivity of the (1)H MRS when performed at TE shorter than 10 ms.
Resumo:
The end-Permian mass extinction removed more than 80% of marine genera. Ammonoid cephalopods were among the organisms most affected by this crisis. The analysis of a global diversity data set of ammonoid genera covering about 106 million years centered on the Permian-Triassic boundary (PTB) shows that Triassic ammonoids actually reached levels of diversity higher than in the Permian less than 2 million years after the PTB. The data favor a hierarchical rather than logistic model of diversification coupled with a niche incumbency hypothesis. This explosive and nondelayed diversification contrasts with the slow and delayed character of the Triassic biotic recovery as currently illustrated for other, mainly benthic groups such as bivalves and gastropods.
Resumo:
Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.