969 resultados para Explanatory variables


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente estudio se enfoca en la inversión en infraestructura en la provincia de Buenos Aires como un elemento central del cambio estructural pregonado para minimizar los diferenciales de productividad que constituyen la clave de los problemas del ciclo económico argentino. En el enfoque se asume la relación bidireccional entre territorio y escala nacional. Se diferencian para el análisis la infraestructura social, productiva y aquella que es consecuencia de la estructura económica dominante. Se incluye un estudio descriptivo del peso de cada tipo de infraestructura y de la lógica de localización de la inversión, y también se realiza una regresión econométrica mediante la cual se buscan variables explicativas significativas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente estudio se enfoca en la inversión en infraestructura en la provincia de Buenos Aires como un elemento central del cambio estructural pregonado para minimizar los diferenciales de productividad que constituyen la clave de los problemas del ciclo económico argentino. En el enfoque se asume la relación bidireccional entre territorio y escala nacional. Se diferencian para el análisis la infraestructura social, productiva y aquella que es consecuencia de la estructura económica dominante. Se incluye un estudio descriptivo del peso de cada tipo de infraestructura y de la lógica de localización de la inversión, y también se realiza una regresión econométrica mediante la cual se buscan variables explicativas significativas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente estudio se enfoca en la inversión en infraestructura en la provincia de Buenos Aires como un elemento central del cambio estructural pregonado para minimizar los diferenciales de productividad que constituyen la clave de los problemas del ciclo económico argentino. En el enfoque se asume la relación bidireccional entre territorio y escala nacional. Se diferencian para el análisis la infraestructura social, productiva y aquella que es consecuencia de la estructura económica dominante. Se incluye un estudio descriptivo del peso de cada tipo de infraestructura y de la lógica de localización de la inversión, y también se realiza una regresión econométrica mediante la cual se buscan variables explicativas significativas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selling on credit is rather frequent in Mediterranean countries. Its generalized use can lead to excessive enlargements of the payment periods and consequently can deteriorate the profitability of firms. In spite of the relevance of this problem there are few empirical researches. This work intends to fill this gap and to shed light on the factors related to the extension of trade credit. In the theoretical and empirical literature, different motives have been proposed to explain this issue: a mechanism to reduce transaction costs, a financial alternative to the bank system and an additional tool to improve commercial activities. To contrast these ideas a panel of 388 firms of the Spanish agrofood industry has been taken, and static and dynamic regression models have been estimated by using robust methods to heteroskedasticity, autocorrelation and endogeneity of the explanatory variables. The results confirm that trade credit receivable is associated with more active firms and with cheaper bank financing. Other factors with positive relationships are short-term bank debts and accounts payable. These findings are consistent with commercial motives, rather than a pure financial view, in the sense that financial distressed producers extend trade credit as a way of promoting their products and in turn increasing their sales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract This paper describes a two-part methodology for managing the risk posed by water supply variability to irrigated agriculture. First, an econometric model is used to explain the variation in the production value of irrigated agriculture. The explanatory variables include an index of irrigation water availability (surface storage levels), a price index representative of the crops grown in each geographical unit, and a time variable. The model corrects for autocorrelation and it is applied to 16 representative Spanish provinces in terms of irrigated agriculture. In the second part, the fitted models are used for the economic evaluation of drought risk. In flow variability in the hydrological system servicing each province is used to perform ex-ante evaluations of economic output for the upcoming irrigation season. The model?s error and the probability distribution functions (PDFs) of the reservoirs? storage variations are used to generate Monte Carlo (Latin Hypercube) simulations of agricultural output 7 and 3 months prior to the irrigation season. The results of these simulations illustrate the different risk profiles of each management unit, which depend on farm productivity and on the probability distribution function of water in flow to reservoirs. The potential for ex-ante drought impact assessments is demonstrated. By complementing hydrological models, this method can assist water managers and decisionmakers in managing reservoirs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a medical technology, new in agrofood research, which is capable of obtaining physical and chemical information independently and simultaneously, and this can be of interest to characterise mealiness. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Son generalmente aceptadas las tendencias actuales de maximización de la automatización para la adaptación de las terminales marítimas de contenedores a las cada vez mayores exigencias competitivas del negocio de transporte de contenedores. En esta investigación, se somete a consideración dichas tendencias a través de un análisis que tenga en cuenta la realidad global de la terminal pero también su propia realidad local que le permita aprovechar sus fortalezas y minimizar sus debilidades en un mercado continuamente en crecimiento y cambio. Para lo cual se ha desarrollado un modelo de análisis en el que se tengan en cuenta los parámetros técnicos, operativos, económicos y financieros que influyen en el diseño de una terminal marítima de contenedores, desde su concepción como ente dependiente para generar negocio, todos ellos dentro de un perímetro definido por el mercado del tráfico de contenedores así como las limitaciones físicas introducidas por la propia terminal. Para la obtención de dicho modelo ha sido necesario llevar a cabo un proceso de estudio del contexto actual del tráfico de contenedores y su relación con el diseño de las terminales marítimas, así como de las metodologías propuestas hasta ahora por los diferentes autores para abordar el proceso de dimensionamiento y diseño de la terminal. Una vez definido el modelo que ha de servir de base para el diseño de una terminal marítima de contenedores desde un planteamiento multicriterio, se analiza la influencia de las diversas variables explicativas de dicho modelo y se cuantifica su impacto en los resultados económicos, financieros y operativos de la terminal. Un paso siguiente consiste en definir un modelo simplificado que vincule la rentabilidad de una concesión de terminal con el tráfico esperado en función del grado de automatización y del tipo de terminal. Esta investigación es el fruto del objetivo ambicioso de aportar una metodología que defina la opción óptima de diseño de una terminal marítima de contenedores apoyada en los pilares de la optimización del grado de automatización y de la maximización de la rentabilidad del negocio que en ella se desarrolla. It is generally accepted current trends in automation to maximize the adaptation of maritime container terminals to the growing competitive demands of the business of container shipping. In this research, is submitted to these trends through an analysis taking into account the global reality of the terminal but also their own local reality it could exploit its strengths and minimize their weaknesses in a market continuously growing and changing. For which we have developed a model analysis that takes into account the technical, operational, financial and economic influence in the design of a container shipping terminal, from its conception as being dependent to generate business, all within a perimeter defined by the market of container traffic and the physical constraints introduced by the terminal. To obtain this model has been necessary to conduct a study process in the current context of container traffic and its relation to the design of marine terminals, as well as the methodologies proposed so far by different authors to address the process sizing and design of the terminal. Having defined the model that will serve as the basis for the design for a container shipping terminal from a multi-criteria approach, we analyze the influence of various explanatory variables of the model and quantify their impact on economic performance, financial and operational of the terminal. A next step is to define a simplified model that links the profitability of a terminal concession with traffic expected on the basis of the degree of automation and the kind of terminal. This research is the result of the ambitious target of providing a methodology to define the optimal choice of designing a container shipping terminal on the pillars of automation optimizing and maximizing the profitability of the business that it develops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a new medical technology, used to characterise the optical properties of tissues, and to locate affected areas like tumours. Among its advantages compared to more traditional spectroscopic techniques, there is the feasibility to asses simultaneously and independently two optical parameters: the absorption of the light inside the irradiated body, and the scattering of the photons across the tissues, at each wavelength, generating two coefficients (µa, absorption coeff.; and µ's, transport scattering coeff.). If it is assumed that they are related respectively to chemical components and to physical properties of the sample, TDRS can be applied to the quantification of chemicals and the measurement of the rheological properties (i.e. mealiness estimation) at the same time. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, an electricity price forecasting model is developed. The performance of the proposed approach is improved by considering renewable energies (wind power and hydro generation) as explanatory variables. Additionally, the resulting forecasts are obtained as an optimal combination of a set of several univariate and multivariate time series models. The large computational experiment carried out using out-of-sample forecasts for every hour and day allows withdrawing statistically sound conclusions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we apply count data models to four integer–valued time series related to accidentality in Spanish roads applying both the frequentist and Bayesian approaches. The time series are: number of fatalities, number of fatal accidents, number of killed or seriously injured (KSI) and number of accidents with KSI. The model structure is Poisson regression with first order autoregressive errors. The purpose of the paper is first to sort out the explanatory variables by relevance and second to carry out a prediction exercise for validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impact response surfaces (IRSs) depict the response of an impact variable to changes in two explanatory variables as a plotted surface. Here, IRSs of spring and winter wheat yields were constructed from a 25-member ensemble of process-based crop simulation models. Twenty-one models were calibrated by different groups using a common set of calibration data, with calibrations applied independently to the same models in three cases. The sensitivity of modelled yield to changes in temperature and precipitation was tested by systematically modifying values of 1981-2010 baseline weather data to span the range of 19 changes projected for the late 21st century at three locations in Europe.