874 resultados para Expert systems (Computer science)
Resumo:
Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.
Resumo:
The integration of unmanned aircraft into civil airspace is a complex issue. One key question is whether unmanned aircraft can operate just as safely as their manned counterparts. The absence of a human pilot in unmanned aircraft automatically points to a deficiency that is the lack of an inherent see-and-avoid capability. To date, regulators have mandated that an “equivalent level of safety” be demonstrated before UAVs are permitted to routinely operate in civil airspace. This chapter proposes techniques, methods, and hardware integrations that describe a “sense-and-avoid” system designed to address the lack of a see-and-avoid capability in UAVs.
Resumo:
With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system
Resumo:
The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.
Resumo:
Recognizing the impact of reconfiguration on the QoS of running systems is especially necessary for choosing an appropriate approach to dealing with dynamic evolution of mission-critical or non-stop business systems. The rationale is that the impaired QoS caused by inappropriate use of dynamic approaches is unacceptable for such running systems. To predict in advance the impact, the challenge is two-fold. First, a unified benchmark is necessary to expose QoS problems of existing dynamic approaches. Second, an abstract representation is necessary to provide a basis for modeling and comparing the QoS of existing and new dynamic reconfiguration approaches. Our previous work [8] has successfully evaluated the QoS assurance capabilities of existing dynamic approaches and provided guidance of appropriate use of particular approaches. This paper reinvestigates our evaluations, extending them into concurrent and parallel environments by abstracting hardware and software conditions to design an evaluation context. We report the new evaluation results and conclude with updated impact analysis and guidance.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
The popularity of Bayesian Network modelling of complex domains using expert elicitation has raised questions of how one might validate such a model given that no objective dataset exists for the model. Past attempts at delineating a set of tests for establishing confidence in an entirely expert-elicited model have focused on single types of validity stemming from individual sources of uncertainty within the model. This paper seeks to extend the frameworks proposed by earlier researchers by drawing upon other disciplines where measuring latent variables is also an issue. We demonstrate that even in cases where no data exist at all there is a broad range of validity tests that can be used to establish confidence in the validity of a Bayesian Belief Network.
Resumo:
Fundamental tooling is required in order to apply USDL in practical settings. This chapter discusses three fundamental types of tools for USDL. First, USDL editors have been developed for expert and casual users, respectively. Second, several USDL repositories have been built to allow editors accessing and storing USDL descriptions. Third, our generic USDL marketplace allows providers to describe their services once and potentially trade them anywhere. In addition, the iosyncrasies of service trading as opposed to the simpler case of product trading. The chapter also presents several deployment scenarios of such tools to foster individual value chains and support new business models across organizational boundaries. We close the chapter with an application of USDL in the context of service engineering.
Resumo:
This paper presents an approach to derive requirements for an avionics architecture that provides onboard sense-and-avoid and autonomous emergency forced landing capabilities to a UAS. The approach is based on two design paradigms that (1) derive requirements analyzing the common functionality between these two functions to then derive requirements for sensors, computing capability, interfaces, etc. (2) consider the risk and safety mitigation associated with these functions to derive certification requirements for the system design. We propose to use the Aircraft Certification Matrix (ACM) approach to tailor the system Development Assurance Levels (DAL) and architecture requirements in accordance with acceptable risk criteria. This architecture is developed under the name “Flight Guardian”. Flight Guardian is an avionics architecture that integrates common sensory elements that are essential components of any UAS that is required to be dependable. The Flight Guardian concept is also applicable to conventionally piloted aircraft, where it will serve to reduce cockpit workload.
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
Clinical information systems have become important tools in contemporary clinical patient care. However, there is a question of whether the current clinical information systems are able to effectively support clinicians in decision making processes. We conducted a survey to identify some of the decision making issues related to the use of existing clinical information systems. The survey was conducted among the end users of the cardiac surgery unit, quality and safety unit, intensive care unit and clinical costing unit at The Prince Charles Hospital (TPCH). Based on the survey results and reviewed literature, it was identified that support from the current information systems for decision-making is limited. Also, survey results showed that the majority of respondents considered lack in data integration to be one of the major issues followed by other issues such as limited access to various databases, lack of time and lack in efficient reporting and analysis tools. Furthermore, respondents pointed out that data quality is an issue and the three major data quality issues being faced are lack of data completeness, lack in consistency and lack in data accuracy. Conclusion: Current clinical information systems support for the decision-making processes in Cardiac Surgery in this institution is limited and this could be addressed by integrating isolated clinical information systems.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.