993 resultados para Experimental setup
Resumo:
One of the challenges of the postgenomic era is characterizing the function and regulation of specific genes. For various reasons, the early chick embryo can easily be adopted as an in vivo assay of gene function and regulation. The embryos are robust, accessible, easily manipulated, and maintained in the laboratory. Genomic resources centered on vertebrate organisms increase daily. As a consequence of optimization of gene transfer protocols by electroporation, the chick embryo will probably become increasingly popular for reverse genetic analysis. The challenge of establishing chick embryonic electroporation might seem insurmountable to those who are unfamiliar with experimental embryological methods. To minimize the cost, time, and effort required to establish a chick electroporation assay method, we describe and illustrate in great detail the procedures involved in building a low-cost electroporation setup and the basic steps of electroporation
Resumo:
A complete laser cooling setup was built, with focus on threedimensional near-resonant optical lattices for cesium. These consist of regularly ordered micropotentials, created by the interference of four laser beams. One key feature of optical lattices is an inherent ”Sisyphus cooling” process. It efficiently extracts kinetic energy from the atoms, leading to equilibrium temperatures of a few µK. The corresponding kinetic energy is lower than the depth of the potential wells, so that atoms can be trapped. We performed detailed studies of the cooling processes in optical lattices by using the time-of-flight and absorption-imaging techniques. We investigated the dependence of the equilibrium temperature on the optical lattice parameters, such as detuning, optical potential and lattice geometry. The presence of neighbouring transitions in the cesium hyperfine level structure was used to break symmetries in order to identify, which role “red” and “blue” transitions play in the cooling. We also examined the limits for the cooling process in optical lattices, and the possible difference in steady-state velocity distributions for different directions. Moreover, in collaboration with ´Ecole Normale Sup´erieure in Paris, numerical simulations were performed in order to get more insight in the cooling dynamics of optical lattices. Optical lattices can keep atoms almost perfectly isolated from the environment and have therefore been suggested as a platform for a host of possible experiments aimed at coherent quantum manipulations, such as spin-squeezing and the implementation of quantum logic-gates. We developed a novel way to trap two different cesium ground states in two distinct, interpenetrating optical lattices, and to change the distance between sites of one lattice relative to sites of the other lattice. This is a first step towards the implementation of quantum simulation schemes in optical lattices.
Resumo:
The steadily increasing diversity of colloidal systems demands for new theoretical approaches and a cautious experimental characterization. Here we present a combined rheological and microscopical study of colloids in their arrested state whereas we did not aim for a generalized treatise but rather focused on a few model colloids, liquid crystal based colloidal suspensions and sedimented colloidal films. We laid special emphasis on the understanding of the mutual influence of dominant interaction mechanisms, structural characteristics and the particle properties on the mechanical behavior of the colloid. The application of novel combinations of experimental techniques played an important role in these studies. Beside of piezo-rheometry we employed nanoindentation experiments and associated standardized analysis procedures. These rheometric methods were complemented by real space images using confocal microscopy. The flexibility of the home-made setup allowed for a combination of both techniques and thereby for a simultaneous rheological and three-dimensional structural analysis on a single particle level. Though, the limits of confocal microscopy are not reached by now. We show how hollow and optically anisotropic particles can be utilized to quantify contact forces and rotational motions for individual particles. In future such data can contribute to a better understanding of particle reorganization processes, such as the liquidation of colloidal gels and glasses under shear.
Resumo:
A prototype vortex-driven air lift pump was developed and experimentally evaluated. It was designed to be easily manufactured and scalable for arbitrary riser diameters. The model tested fit in a 2 inch diameter riser with six air injection nozzles through which airwas injected helically around the perimeter of the riser at an angle of 70º from pure tangential injection. The pump was intended to transport both water and sediment over a large range of submergence ratios. A test apparatus was designed to be able to simulate deep water or oceanic environments. The resulting test setup had a finite reservoir; over the course of a test, the submergence ratio varied from 0.48 to 0.39. For air injection pressures ranging from 10 to 60 psig and for air flow rates of 6 to 15 scfm, the induced water discharge flow rates varied only slightly, due to the limited range of available submergence ratios. The anticipated simulation of deep water environment, with a corresponding equivalent increase in thesubmergence ratio, proved unattainable. The pump prototype successfully transported both water and sediment (sand). Thepercent volume yield of the sediment was in an acceptable range. The pump design has been subsequently used successfully in a 4 inch configuration in a follow-on project. A computer program was written in Matlab to simulate the pump characteristics. The program output water pressures at the location of air injection which were physicallycompatible with the experimental data.
Resumo:
The abundance of atmospheric oxygen and its evolution through Earth's history is a highly debated topic. The earliest change of the Mo concentration and isotope composition of marine sediments are interpreted to be linked to the onset of the accumulation of free O2 in Earth's atmosphere. The O2 concentration needed to dissolve significant amounts of Mo in water is not yet quantified, however. We present laboratory experiments on pulverized and surface-cleaned molybdenite (MoS2) and a hydrothermal breccia enriched in Mo-bearing sulphides using a glove box setup. Duration of an experiment was 14 days, and first signs of oxidation and subsequent dissolution of Mo compounds start to occur above an atmospheric oxygen concentration of 72 ± 20 ppmv (i.e., 2.6 to 4.6 × 10−4 present atmospheric level (PAL)). This experimentally determined value coincides with published model calculations supporting atmospheric O2 concentrations between 1 × 10−5 to 3 × 10−4 PAL prior to the Great Oxidation Event and sets an upper limit to the molecular oxygen needed to trigger Mo accumulation and Mo isotope variations recorded in sediments. In combination with the published Mo isotope composition of the rock record, this result implies an atmospheric oxygen concentration prior to 2.76 Ga of below 72 ± 20 ppmv.
Resumo:
Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.
Resumo:
Outline: • Introduction • Fundamental Physics of the Laser-Plasma Interaction in Laser Shock Processing • Theoretical/Computational Model Description • Some Results. Analysis of Interaction Parameters • Experimental Validation. Diagnosis Setup • Discussion and Outlook
Resumo:
The extreme runup is a key parameter for a shore risk analysis in which the accurate and quantitative estimation of the upper limit reached by waves is essential. Runup can be better approximated by splitting the setup and swash semi-amplitude contributions. In an experimental study recording setup becomes difficult due to infragravity motions within the surf zone, hence, it would be desirable to measure the setup with available methodologies and devices. In this research, an analysis is made of evaluated the convenience of direct estimation setup as the medium level in the swash zone for experimental runup analysis through a physical model. A physical mobile bed model was setup in a wave flume at the Laboratory for Maritime Experimentation of CEDEX. The wave flume is 36 metres long, 6.5 metres wide and 1.3 metres high. The physical model was designed to cover a reasonable range of parameters, three different slopes (1/50, 1/30 and 1/20), two sand grain sizes (D50 = 0.12 mm and 0.70 mm) and a range for the Iribarren number in deep water (ξ0) from 0.1 to 0.6. Best formulations were chosen for estimating a theoretical setup in the physical model application. Once theoretical setup had been obtained, a comparison was made with an estimation of the setup directly as a medium level of the oscillation in swash usually considered in extreme runup analyses. A good correlation was noted between both theoretical and time-averaging setup and a relation is proposed. Extreme runup is analysed through the sum of setup and semi-amplitude of swash. An equation is proposed that could be applied in strong foreshore slope-dependent reflective beaches.
Resumo:
The impact noise reduction provided by floor coverings is usually obtained in laboratory, using the methodology described in the standard EN ISO 140-8, which requires the use of standard acoustic chambers. The construction of such chambers, following the requirements described in the EN ISO 140-1, implies a significant investment, and therefore only a limited number exists in each country. Alternatives to these standard methodologies, that allow a sufficiently accurate evaluation and require lower resources, have been interesting many researchers and manufacturers. In this paper, one such strategy is discussed, where a reduced sized slab is used to determine the noise reduction provided by floor coverings, following the procedure described in the ISO/CD 16251-1 technical document. Several resilient coverings, floating floors and floating slabs are tested and the results are compared with those obtained using the procedures described in the standards EN ISO 140-8 and EN ISO 717-2.
Resumo:
1) Our study addresses the role of non-genetic and genetic inheritance in shaping the adaptive potential of populations under a warming ocean scenario. We used a combined experimental approach (transgenerational plasticity and quantitative genetics) to partition the relative contribution of maternal vs. paternal (additive genetic) effects to offspring body size (a key component of fitness), and investigated a potential physiological mechanism (mitochondrial respiration capacities) underlying whole organism growth/size responses. 2) In very early stages of growth (up to 30 days), offspring body size of marine sticklebacks benefited from maternal transgenerational plasticity (TGP): offspring of mothers acclimated to17°C were larger when reared at 17°C, and offspring of mothers acclimated to 21°C were larger when reared at 21°C. The benefits of maternal TGP on body size were stronger and persisted longer (up to 60 days) for offspring reared in the warmer (21°C) environment, suggesting that maternal effects will be highly relevant for climate change scenarios in this system. 3) Mitochondrial respiration capacities measured on mature offspring (F1 adults) matched the pattern of TGP for juvenile body size, providing an intuitive mechanistic basis for the maternal acclimation persisting into adulthood. Size differences between temperatures seen at early growth stages remained in the F1 adults, linking offspring body size to maternal inheritance of mitochondria. 4) Lower maternal variance components in the warmer environment were mostly driven by mothers acclimated to ambient (colder) conditions, further supporting our tenet that maternal effects were stronger at elevated temperature. Importantly, all parent-offspring temperature combination groups showed genotype x environment (GxE) interactions, suggesting that reaction norms have the potential to evolve. 5) To summarise, transgenerational plasticity and genotype x environment interactions work in concert to mediate impacts of ocean warming on metabolic capacity and early growth of marine sticklebacks. TGP can buffer short-term detrimental effects of climate warming and may buy time for genetic adaptation to catch up, therefore markedly contributing to the evolutionary potential and persistence of populations under climate change.
Resumo:
Purpose – The purpose of this paper is to investigate the optimization for a placement machine in printed circuit board (PCB) assembly when family setup strategy is adopted. Design/methodology/approach – A complete mathematical model is developed for the integrated problem to optimize feeder arrangement and component placement sequences so as to minimize the makespan for a set of PCB batches. Owing to the complexity of the problem, a specific genetic algorithm (GA) is proposed. Findings – The established model is able to find the minimal makespan for a set of PCB batches through determining the feeder arrangement and placement sequences. However, exact solutions to the problem are not practical due to the complexity. Experimental tests show that the proposed GA can solve the problem both effectively and efficiently. Research limitations/implications – When a placement machine is set up for production of a set of PCB batches, the feeder arrangement of the machine together with the component placement sequencing for each PCB type should be solved simultaneously so as to minimize the overall makespan. Practical implications – The paper investigates the optimization for PCB assembly with family setup strategy, which is adopted by many PCB manufacturers for reducing both setup costs and human errors. Originality/value – The paper investigates the feeder arrangement and placement sequencing problems when family setup strategy is adopted, which has not been studied in the literature.
Resumo:
Background: Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS-) model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods: The anatomical geometries of the MBS-model have been established using computer tomography- (CT-) and magnetic resonance imaging- (MRI-) data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s) on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion: As a result the vertical ground reaction forces (z-direction) calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion: In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in silico development and testing of hip prostheses.
Resumo:
This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.
Resumo:
The reproductive capacity between Triatoma lenti and Triatoma sherlocki was observed in order to verify the fertility and viability of the offspring. Cytogenetic, morphological and morphometric approaches were used to analyze the differences that were inherited. Experimental crosses were performed in both directions. The fertility rate of the eggs in crosses involving T. sherlocki females was 65% and 90% in F1 and F2 offspring, respectively. In reciprocal crosses, it was 7% and 25% in F1 and F2 offspring, respectively. The cytogenetic analyses of the male meiotic process of the hybrids were performed using lacto-acetic orcein, C-banding and Feulgen techniques. The male F1 offspring presented normal chromosome behavior, a finding that was similar to those reported in parental species. However, cytogenetic analysis of F2 offspring showed errors in chromosome pairing. This post-zygotic isolation, which prevents hybrids in nature, may represent the collapse of the hybrid. This phenomenon is due to a genetic dysregulation that occurs in the chromosomes of F1. The results were similar in the hybrids from both crosses. Morphological features, such as color and size of connexive and the presence of red-orange rings on the femora, were similar to T. sherlocki, while wins size was similar to T. lenti in F1 offspring. The eggshells showed characteristics that were similar to species of origin, whereas the median process of the pygophore resulted in intermediate characteristics in the F1 and a segregating pattern in F2 offspring. Geometric morphometric techniques used on the wings showed that both F1 and F2 offspring were similar to T. lenti. These studies on the reproductive capacity between T. lenti and T. sherlocki confirm that both species are evolutionarily closed; hence, they are included in the brasiliensis subcomplex. The extremely reduced fertility observed in the F2 hybrids confirmed the specific status of the species that were analyzed.