959 resultados para Experimental animal models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4 oxim preparation alone or in combination with fluconazole. Tissue burden analysis revealed that oxims on their own were able to decrease fungal burdens in both Candida species. In azole-resistant isolates, oxims acted synergistically in vivo with fluconazole to reduce fungal burden to levels of azole-susceptible isolates. In conclusion, we show here the potential of milbemycins not only as drug efflux inhibitors but also as effective fungal growth inhibitors in C. glabrata and C. albicans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocular toxoplasmosis is the principal cause of posterior uveitis and a leading cause of blindness. Animal models are required to improve our understanding of the pathogenesis of this disease. The method currently used for the detection of retinal cysts in animals involves the observation, under a microscope, of all the sections from infected eyes. However, this method is time-consuming and lacks sensitivity. We have developed a rapid, sensitive method for observing retinal cysts in mice infected with Toxoplasma gondii. This method involves combining the flat-mounting of retina - a compromise between macroscopic observation and global analysis of this tissue - and the use of an avirulent recombinant strain of T. gondii expressing the Escherichia coli beta-galactosidase gene, visually detectable at the submacroscopic level. Single cyst unilateral infection was found in six out of 17 mice killed within 28 days of infection, whereas a bilateral infection was found in only one mouse. There was no correlation between brain cysts number and ocular infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the ability of 80 MHz ultrasonography to differentiate intra-retinal layers and quantitatively assess photoreceptor dystrophy in small animal models. Four groups of 10 RCS rats each (five dystrophic and five controls) were explored at 25, 35, 45 and 55 days post-natal (PN). A series of retina cross-sections were obtained ex vivo from outside intact eyes using an 80 MHz three-dimensional ultrasound backscatter microscope (20-microm-axial resolution). Ultrasound features of normal retina were correlated to those of corresponding histology and thickness measurements of photoreceptor segment and nuclear layers were performed on all groups. To show the ability of 80 MHz ultrasonography to distinguish the retinal degeneration in vivo, one RCS rat was explored at 25 and 55 days post-natal. Ultrasound image of normal retina displayed four distinct layers marked by reflections at neurites/nuclei interfaces and permitted to differentiate the photoreceptor segment and nuclear layers. The backscatter level from the retina was shown to be related to the size, density and organization of the intra-layer structure. Ultrasound thickness measurements highly correlated with histologic measurements. A thinning (p<0.05) of outer nuclear layer (ONL) was detected over time for controls and was thought to be assigned to retina maturation. Retinal degeneration started at PN35 and resulted in a more pronounced ONL thinning (p<0.05) over time. ONL degeneration was accompanied by segment layer thickening (p<0.05) at PN35 and thinning thereafter. These changes may indicate accumulation of outer segment debris at PN35 then progressive destruction. In vivo images of rat intra-retinal structure showed the ability of the method to distinguish the photoreceptor layer changes. Our results indicate that 80 MHz ultrasonography reveals intra-retinal layers and is sensitive to age and degenerative changes of photoreceptors. This technique has great potential to follow-up retinal dystrophy and therapeutic effects in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquaporin 9 facilitates the diffusion of water but also glycerol and monocarboxylates, known as brain energy substrates. AQP9 was recently observed in catecholaminergic neurons that are implicated in energy homeostasis and also possibly in neuroendocrine effects of diabetes. Recently it has been observed that the level of AQP9 expression in hepatocytes is sensitive to the blood concentration of insulin. Furthermore, insulin injection in the brain is known to be related to the energy homeostasis. Based on these observations, we investigated if the concentration of insulin affects the level of brain AQP9 expression and if so, in which cell types. This study has been carried out, in a model of the diabetic rat generated by streptozotocin injection and on brainstem slices. In diabetic rats showing a decrease in systemic insulin concentration, AQP9 is only increased in brain areas containing catecholaminergic neurons. In contrast, no significant change is detected in the cerebral cortex and the cerebellum. Using immunocytochemistry, we are able to show that the increase in AQP9 expression is specifically present in catecholaminergic neurons. In brainstem slice cultures, 2 microM insulin induces a significant decrease in AQP9 protein levels 6 h after application, suggesting that brain AQP9 is also regulated by the insulin. These results show that the level of expression of brain AQP9 is affected by variations of the concentration of insulin in a diabetic model and in vitro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antifungal agent fluconazole (FLC) is widely used in clinical practice. Monitoring FLC levels is useful in complicated clinical settings and in experimental infection models. A bioassay using Candida pseudotropicalis, a simple and cost-effective method, is validated only for FLC levels ranging from 5 to 40 mg/liter. An extension of the analytical range is needed to cover most yeast MICs. A new bioassay in RPMI agar containing methylene blue was developed using C. albicans DSY1024, a mutant rendered hypersusceptible to FLC constructed by the deletion of the multidrug efflux transporter genes CDR1, CDR2, CaMDR1, and FLU1. Reproducible standard curves were obtained with FLC concentrations in plasma ranging from 1 to 100 mg/liter (quadratic regression coefficient &gt; 0.997). The absolute sensitivity was 0.026 microg of FLC. The method was internally validated according to current guidelines for analytical method validation. Both accuracy and precision lied in the required +/-15% range. FLC levels measured by bioassay and by high-performance liquid chromatography (HPLC) performed with 62 plasma samples from humans and rats showed a strong correlation (coefficients, 0.979 and 0.995, respectively; percent deviations of bioassay from HPLC values, 0.44% +/- 15.31% and 2.66% +/- 7.54%, respectively). In summary, this newly developed bioassay is sensitive, simple, rapid, and inexpensive. It allows nonspecialized laboratories to determine FLC levels in plasma to within the clinically relevant concentration range and represents a useful tool for experimental treatment models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) have developed resistance to virtually all non-experimental antibiotics. They are intrinsically resistant to beta-lactams by virtue of newly acquired low-affinity penicillin-binding protein 2A (PBP2A). Because PBP2A can build the wall when other PBPs are blocked by beta-lactams, designing beta-lactams capable of blocking this additional target should help solve the issue. Older molecules including penicillin G, amoxicillin and ampicillin had relatively good PBP2A affinities, and successfully treated experimental endocarditis caused by MRSA, provided that the bacterial penicillinase could be inhibited. Newer anti-PBP2A beta-lactams with over 10-fold greater PBP2A affinities and low minimal inhibitory concentrations were developed, primarily in the cephem and carbapenem classes. They are also very resistant to penicillinase. Most have demonstrated anti-MRSA activity in animal models of infection, and two--the carbapenem CS-023 and the cephalosporin ceftopibrole medocaril--have proceeded to Phase II and Phase III clinical evaluation. Thus, clinically useful anti-MRSA beta-lactams are imminent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the aim of improving human health, scientists have been using an approach referred to as translational research, in which they aim to convey their laboratory discoveries into clinical applications to help prevent and cure disease. Such discoveries often arise from cellular, molecular, and physiological studies that progress to the clinical level. Most of the translational work is done using animal models that share common genes, molecular pathways, or phenotypes with humans. In this article, we discuss how translational work is carried out in various animal models and illustrate its relevance for human sleep research and sleep-related disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of ischemic brain damage is strongly affected by an inflammatory reaction that involves soluble mediators, such as cytokines and chemokines, and specialized cells activated locally or recruited from the periphery. The immune system affects all phases of the ischemic cascade, from the acute intravascular reaction due to blood flow disruption, to the development of brain tissue damage, repair and regeneration. Increased endothelial expression of adhesion molecules and blood-brain barrier breakdown promotes extravasation and brain recruitment of blood-borne cells, including macrophages, neutrophils, dendritic cells and T lymphocytes, as demonstrated both in animal models and in human stroke. Nevertheless, most anti-inflammatory approaches showing promising results in experimental stroke models failed in the clinical setting. The lack of translation may reside in the redundancy of most inflammatory mediators, exerting both detrimental and beneficial functions. Thus, this review is aimed at providing a better understanding of the dualistic role played by each component of the inflammatory/immune response in relation to the spatio-temporal evolution of ischemic stroke injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite their high prevalence, associated disability and seemingly rich pharmacopeia, the various forms of chronic pain remain frequently intractable. The past decade witnessed the rise of a concept stating that non-neuronal cells of the central nervous system, astrocytes and microglia, are crucial elements in pathological pain. This review gathers and summarizes the experimental data underpinning this theory in animal models and addresses their pertinence in humans. The potential opportunities and constraints of glial inhibition are exposed and compared to more moderate strategies of selective modulation. This therapeutic hope is particularly highlighted in our discussion of the first completed clinical trials employing glial inhibitors in the treatment of chronic pain.