879 resultados para Evoked potentials (Electrophysiology)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous studies have suggested that the whisker-evoked hemodynamic response contains two mechanisms, a transient ‘backwards’ dilation of the middle cerebral artery, followed by an increase in blood volume localized to the site of neural activity. To distinguish between the mechanisms responsible for these aspects of the response, we presented whisker stimuli during normocapnia (‘control’), and during a high level of hypercapnia. Hypercapnia was used to ‘predilate’ arteries and thus possibly ‘inhibit’ aspects of the response related to the ‘early’ mechanism. Indeed, hemodynamic data suggested that the transient stimulus-evoked response was absent under hypercapnia. However, evoked neural responses were also altered during hypercapnia and convolution of the neural responses from both the normocapnic and hypercapnic conditions with a canonical impulse response function, suggested that neurovascular coupling was similar in both conditions. Although data did not clearly dissociate early and late vascular responses, they suggest that the neurovascular coupling relationship is neurogenic in origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using previously published data from the whisker barrel cortex of anesthetized rodents (Berwick et al 2008 J. Neurophysiol. 99 787–98) we investigated whether highly spatially localized stimulus-evoked cortical hemodynamics responses displayed a linear time-invariant (LTI) relationship with neural activity. Presentation of stimuli to individual whiskers of 2 s and 16 s durations produced hemodynamics and neural activity spatially localized to individual cortical columns. Two-dimensional optical imaging spectroscopy (2D-OIS) measured hemoglobin responses, while multi-laminar electrophysiology recorded neural activity. Hemoglobin responses to 2 s stimuli were deconvolved with underlying evoked neural activity to estimate impulse response functions which were then convolved with neural activity evoked by 16 s stimuli to generate predictions of hemodynamic responses. An LTI system more adequately described the temporal neuro-hemodynamics coupling relationship for these spatially localized sensory stimuli than in previous studies that activated the entire whisker cortex. An inability to predict the magnitude of an initial 'peak' in the total and oxy- hemoglobin responses was alleviated when excluding responses influenced by overlying arterial components. However, this did not improve estimation of the hemodynamic responses return to baseline post-stimulus cessation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with schizophrenia have reduced execution functions and white matter alterations indicating cerebral disconnectivity. Here we investigated the relationship between white matter integrity and event related potentials (ERP) during a continuous performance test (CPT). Anisotropy values were correlated with the brain electrical P300 microstate duration and P300 latency associated to the NoGo- and the Go-stimuli of the CPT in 11 patients with first episode schizophrenia and 11 matched healthy controls. Both groups showed significant positive correlations of the NoGo-microstate duration with the white matter signal in the superior frontal region, the optic radiation, the posterior cingulate, and the inferolateral fascicle. In addition, patients with first episode schizophrenia had significant correlations with the right radiation and the left genu of the corpus callosum, bilateral geniculate, and the left middle and the superior temporal regions. We interpreted these findings as a sign of functional correlates of extended circuits for the active inhibition of a motor response in the visual CPT as compared to controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. Electrical activity (cell firing, EEG) was monitored concurrently with microdialysis sampling of extracellular glutamate, glucose and lactate. Electrophysiological parameters (firing rate, serial correlation, field potential occurrences) were analyzed offline and compared to dialysate concentrations. In rats, these probes demonstrated an injury-induced suppression of neuronal firing (from a control level of 2.87 to 0.41 spikes/sec postinjury), which was associated with increases in extracellular glutamate and lactate, and decreases in glucose levels. When placed in human patients, the probes detected sparse and slowly firing cells (mean = 0.21 spike/sec), with most units (70%) exhibiting a lack of serial correlation in the spike train. In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SPatch is an open source virtual laboratory designed to perform simulated electrophysiological experiments without the technical difficulties inherent to laboratory work. It provides the core equipment necessary for recording neuronal activity and allows the user to install the equipment, design their own protocols, prepare solutions to bathe the preparation or to fill the electrodes, and gather data. Assistance is provided for most steps with predefined components that are appropriate to a range of standard procedures. Experiments that can be performed with SPatch at present concern the study of voltage-gated channels in isolated neurons. This allows understanding the ionic mechanisms of Na+ and Ca2+ action potentials, after spike hyperpolarization, pacemaker tonic or bursting activity of neurons, delayed or sustained or adaptive firing of neurons in response to a depolarization, spontaneous depolarization of the membrane following an hyperpolarization, etc. In an educational context, the main interest of SPatch is to allow students to focus on the concepts and thought processes of electrophysiological investigation without the high equipment costs and extensive training required to perform laboratory work. It can be used to acquaint students with the relevant procedures before starting work in a real lab, or to give students an understanding of single neuron behavior and the ways it can be studied without requiring practical work. We illustrate the function and use of SPatch, explore educational issues arising from the inevitable differences between simulated and real laboratory work, and outline possible improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Ocular vestibular-evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. The authors sought to investigate whether posture-induced increase of the intracranial pressure (ICP) modulated oVEMP frequency tuning, that is, the amplitude ratio between 500-Hz and 1000-Hz stimuli. DESIGN Ten healthy subjects were enrolled in this study. The subjects were positioned in the horizontal plane (0 degree) and in a 30-degree head-downwards position to elevate the ICP. In both positions, oVEMPs were recorded using 500-Hz and 1000-Hz air-conducted tone bursts. RESULTS When tilting the subject from the horizontal plane to the 30-degree head-down position, oVEMP amplitudes in response to 500-Hz tone bursts distinctly decreased (3.40 μV versus 2.06 μV; p < 0.001), whereas amplitudes to 1000 Hz were only slightly diminished (2.74 μV versus 2.48 μV; p = 0.251). Correspondingly, the 500/1000-Hz amplitude ratio significantly decreased when tilting the subjects from 0- to 30-degree inclination (1.59 versus 1.05; p = 0.029). Latencies were not modulated by head-down position. CONCLUSIONS Increasing ICP systematically alters oVEMPs in terms of absolute amplitudes and frequency tuning characteristics. oVEMPs are therefore in principle suited for noninvasive ICP monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de cette thèse est l’étude du développement de l’attention auditive et des capacités de discrimination langagière chez l’enfant né prématurément ou à terme. Les derniers mois de grossesse sont particulièrement importants pour le développement cérébral de l’enfant et les conséquences d’une naissance prématurée sur le développement peuvent être considérables. Les enfants nés prématurément sont plus à risque de développer une variété de troubles neurodéveloppementaux que les enfants nés à terme. Même en l’absence de dommages cérébraux visibles, de nombreux enfants nés avant terme sont à risque de présenter des troubles tels que des retards langagiers ou des difficultés attentionnelles. Dans cette thèse, nous proposons donc une méthode d’investigation des processus préattentionnels auditifs et de discrimination langagière, à l’aide de l’électrophysiologie à haute densité et des potentiels évoqués auditifs (PEAs). Deux études ont été réalisées. La première visait à mettre sur pied un protocole d’évaluation de l’attention auditive et de la discrimination langagière chez l’enfant en santé, couvrant différents stades de développement (3 à 7 ans, 8 à 13 ans, adultes ; N = 40). Pour ce faire, nous avons analysé la composante de Mismatch Negativity (MMN) évoquée par la présentation de sons verbaux (syllabes /Ba/ et /Da/) et non verbaux (tons synthétisés, Ba : 1578 Hz/2800 Hz ; Da : 1788 Hz/2932 Hz). Les résultats ont révélé des patrons d’activation distincts en fonction de l’âge et du type de stimulus présenté. Chez tous les groupes d’âge, la présentation des stimuli non verbaux a évoqué une MMN de plus grande amplitude et de latence plus rapide que la présentation des stimuli verbaux. De plus, en réponse aux stimuli verbaux, les deux groupes d’enfants (3 à 7 ans, 8 à 13 ans) ont démontré une MMN de latence plus tardive que celle mesurée dans le groupe d’adultes. En revanche, en réponse aux stimuli non verbaux, seulement le groupe d’enfants de 3 à 7 ans a démontré une MMN de latence plus tardive que le groupe d’adulte. Les processus de discrimination verbaux semblent donc se développer plus tardivement dans l’enfance que les processus de discrimination non verbaux. Dans la deuxième étude, nous visions à d’identifier les marqueurs prédictifs de déficits attentionnels et langagiers pouvant découler d’une naissance prématurée à l’aide des PEAs et de la MMN. Nous avons utilisé le même protocole auprès de 74 enfants âgés de 3, 12 et 36 mois, nés prématurément (avant 34 semaines de gestation) ou nés à terme (au moins 37 semaines de gestation). Les résultats ont révélé que les enfants nés prématurément de tous les âges démontraient un délai significatif dans la latence de la réponse MMN et de la P150 par rapport aux enfants nés à terme lors de la présentation des sons verbaux. De plus, les latences plus tardives de la MMN et de la P150 étaient également corrélées à des performances langagières plus faibles lors d’une évaluation neurodéveloppementale. Toutefois, aucune différence n’a été observée entre les enfants nés à terme ou prématurément lors de la discrimination des stimuli non verbaux, suggérant des capacités préattentionnelles auditives préservées chez les enfants prématurés. Dans l’ensemble, les résultats de cette thèse indiquent que les processus préattentionnels auditifs se développent plus tôt dans l'enfance que ceux associés à la discrimination langagière. Les réseaux neuronaux impliqués dans la discrimination verbale sont encore immatures à la fin de l'enfance. De plus, ceux-ci semblent être particulièrement vulnérables aux impacts physiologiques liés à la prématurité. L’utilisation des PEAs et de la MMN en réponse aux stimuli verbaux en bas âge peut fournir des marqueurs prédictifs des difficultés langagières fréquemment observées chez l’enfant prématuré.