966 resultados para Event-related potentials
Resumo:
Le traitement des émotions joue un rôle essentiel dans les relations interpersonnelles. Des déficits dans la reconnaissance des émotions évoquées par les expressions faciales et vocales ont été démontrés à la suite d’un traumatisme craniocérébral (TCC). Toutefois, la majorité des études n’ont pas différencié les participants selon le niveau de gravité du TCC et n’ont pas évalué certains préalables essentiels au traitement émotionnel, tels que la capacité à percevoir les caractéristiques faciales et vocales, et par le fait même, la capacité à y porter attention. Aucune étude ne s’est intéressée au traitement des émotions évoquées par les expressions musicales, alors que la musique est utilisée comme méthode d’intervention afin de répondre à des besoins de prise en charge comportementale, cognitive ou affective chez des personnes présentant des atteintes neurologiques. Ainsi, on ignore si les effets positifs de l’intervention musicale sont basés sur la préservation de la reconnaissance de certaines catégories d’émotions évoquées par les expressions musicales à la suite d’un TCC. La première étude de cette thèse a évalué la reconnaissance des émotions de base (joie, tristesse, peur) évoquées par les expressions faciales, vocales et musicales chez quarante et un adultes (10 TCC modéré-sévère, 9 TCC léger complexe, 11 TCC léger simple et 11 témoins), à partir de tâches expérimentales et de tâches perceptuelles contrôles. Les résultats suggèrent un déficit de la reconnaissance de la peur évoquée par les expressions faciales à la suite d’un TCC modéré-sévère et d’un TCC léger complexe, comparativement aux personnes avec un TCC léger simple et sans TCC. Le déficit n’est pas expliqué par un trouble perceptuel sous-jacent. Les résultats montrent de plus une préservation de la reconnaissance des émotions évoquées par les expressions vocales et musicales à la suite d’un TCC, indépendamment du niveau de gravité. Enfin, malgré une dissociation observée entre les performances aux tâches de reconnaissance des émotions évoquées par les modalités visuelle et auditive, aucune corrélation n’a été trouvée entre les expressions vocales et musicales. La deuxième étude a mesuré les ondes cérébrales précoces (N1, N170) et plus tardives (N2) de vingt-cinq adultes (10 TCC léger simple, 1 TCC léger complexe, 3 TCC modéré-sévère et 11 témoins), pendant la présentation d’expressions faciales évoquant la peur, la neutralité et la joie. Les résultats suggèrent des altérations dans le traitement attentionnel précoce à la suite d’un TCC, qui amenuisent le traitement ultérieur de la peur évoquée par les expressions faciales. En somme, les conclusions de cette thèse affinent notre compréhension du traitement des émotions évoquées par les expressions faciales, vocales et musicales à la suite d’un TCC selon le niveau de gravité. Les résultats permettent également de mieux saisir les origines des déficits du traitement des émotions évoquées par les expressions faciales à la suite d’un TCC, lesquels semblent secondaires à des altérations attentionnelles précoces. Cette thèse pourrait contribuer au développement éventuel d’interventions axées sur les émotions à la suite d’un TCC.
Resumo:
Salient stimuli, like sudden changes in the environment or emotional stimuli, generate a priority signal that captures attention even if they are task-irrelevant. However, to achieve goal-driven behavior, we need to ignore them and to avoid being distracted. It is generally agreed that top-down factors can help us to filter out distractors. A fundamental question is how and at which stage of processing the rejection of distractors is achieved. Two circumstances under which the allocation of attention to distractors is supposed to be prevented are represented by the case in which distractors occur at an unattended location (as determined by the deployment of endogenous spatial attention) and when the amount of visual working memory resources is reduced by an ongoing task. The present thesis is focused on the impact of these factors on three sources of distraction, namely auditory and visual onsets (Experiments 1 and 2, respectively) and pleasant scenes (Experiment 3). In the first two studies we recorded neural correlates of distractor processing (i.e., Event-Related Potentials), whereas in the last study we used interference effects on behavior (i.e., a slowing down of response times on a simultaneous task) to index distraction. Endogenous spatial attention reduced distraction by auditory stimuli and eliminated distraction by visual onsets. Differently, visual working memory load only affected the processing of visual onsets. Emotional interference persisted even when scenes occurred always at unattended locations and when visual working memory was loaded. Altogether, these findings indicate that the ability to detect the location of salient task-irrelevant sounds and identify the affective significance of natural scenes is preserved even when the amount of visual working memory resources is reduced by an ongoing task and when endogenous attention is elsewhere directed. However, these results also indicate that the processing of auditory and visual distractors is not entirely automatic.
Resumo:
Although the prominent role of neural oscillations in perception and cognition has been continuously investigated, some critical questions remain unanswered. My PhD thesis was aimed at addressing some of them. First, can we dissociate oscillatory underpinnings of perceptual accuracy and subjective awareness? Current work would strongly suggest that this dissociation can be drawn. While the fluctuations in alpha-amplitude decide perceptual bias and metacognitive abilities, the speed of alpha activity (i.e., alpha-frequency) dictates sensory sampling, shaping perceptual accuracy. Second, how are these oscillatory mechanisms integrated during attention? The obtained results indicate that a top-down visuospatial mechanism modulates neural assemblies in visual areas via oscillatory re-alignment and coherence in the alpha/beta range within the fronto-parietal brain network. These perceptual predictions are reflected in the retinotopically distributed posterior alpha-amplitude, while perceptual accuracy is explained by the higher alpha-frequency at the to-be-attended location. Finally, sensory input, elaborated via fast gamma oscillations, is linked to specific phases of this slower activity via oscillatory nesting, enabling integration of the feedback-modulated oscillatory activity with sensory information. Third, how can we relate this oscillatory activity to other neural markers of behaviour (i.e., event-related potentials)? The obtained results favour the oscillatory model of ERP genesis, where alpha-frequency shapes the latency of early evoked-potentials, namely P1, with both neural indices being related to perceptual accuracy. On the other hand, alpha-amplitude dictates the amplitude of later P3 evoked-response, whereas both indices shape subjective awareness. Crucially, by combining different methodological approaches, including neurostimulation (TMS) and neuroimaging (EEG), current work identified these oscillatory-behavior links as causal and not just as co-occurring events. Current work aimed at ameliorating the use of the TMS-EEG approach by explaining inter-individual differences in the stimulation outcomes, which could be proven crucial in the way we design entrainment experiments and interpret the results in both research and clinical settings.
Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials.
Resumo:
This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants" math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a nonnumerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.
Resumo:
Event-related brain potentials (ERP) are important neural correlates of cognitive processes. In the domain of language processing, the N400 and P600 reflect lexical-semantic integration and syntactic processing problems, respectively. We suggest an interpretation of these markers in terms of dynamical system theory and present two nonlinear dynamical models for syntactic computations where different processing strategies correspond to functionally different regions in the system's phase space.
Resumo:
Movement-related cortical potentials recorded from the scalp reveal increasing cortical activity occurring prior to voluntary movement. Studies of set-related cortical activity recorded from single neurones within premotor and supplementary motor areas in monkeys suggest that such premovement activity may act to prime activity of appropriate motor units in readiness to move, thereby facilitating the movement response. Such a role of early stage premovement activity in movement-related cortical potentials was investigated by examining the relationship between premovement cortical activity and movement initiation or reaction times. Parkinson's disease and control subjects performed a simple button-pressing reaction time task and individual movement-related potentials were averaged for responses with short compared with long reaction times. For Parkinson's disease subjects but not for the control subjects, early stage premovement cortical activity was significantly increased in amplitude for faster reaction times, indicating that there is indeed a relationship between premovement cortical activity amplitude and movement initiation or reaction times. In support of studies of set-related cortical activity in monkeys, it is therefore suggested that early stage premovement activity reflects the priming of appropriate motor units of primary motor cortex, thereby reducing movement initiation or reaction times. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
Background. The ability to inhibit inappropriate or unwanted actions is a key element of executive control. The existence OF executive function deficits in schizophrenia is consistent with frontal lobe theories of the disorder. Relatively few Studies have examined response inhibition in schizophrenia, and none in adolescent patients with early-onset schizophrenia (EOS). Methods. Twenty-one adolescents with (lie onset of clinically impairing psychosis before 19 years of age and 16 matched controls performed a stop-signal task to assess response inhibition. The patients with EOS were categorized Lis paranoid (n= 10) and Undifferentiated subtypes (n= 11). The undifferentiated group had higher levels of negative symptomatology. Stop-signal reaction time (SSRT) and go-signal reaction time (Go-RT) were analysed with respect to hand of response. Results. The Undifferentiated early-onset patients had significantly longer SSRTs, indicative of poor response inhibition, for the left hand compared to the paranoid early-onset patients and control participants. No differences existed for inhibitory control with the right hand. The three groups did not differ in Go-RT. Conclusions. Our results indicate a specific lateralized impairment of response inhibition in patients With Undifferentiated, but not paranoid, EOS. These findings are consistent with reports of immature frontostriatal networks in EOS and implicate areas such as the pre-motor cortex and Supplementary motor area (SMA) that are thought to play a role in both voluntary initiation and inhibition of movement.
Resumo:
Recent studies have demonstrated the positive effects of musical training on the perception of vocally expressed emotion. This study investigated the effects of musical training on event-related potential (ERP) correlates of emotional prosody processing. Fourteen musicians and fourteen control subjects listened to 228 sentences with neutral semantic content, differing in prosody (one third with neutral, one third with happy and one third with angry intonation), with intelligible semantic content (semantic content condition--SCC) and unintelligible semantic content (pure prosody condition--PPC). Reduced P50 amplitude was found in musicians. A difference between SCC and PPC conditions was found in P50 and N100 amplitude in non-musicians only, and in P200 amplitude in musicians only. Furthermore, musicians were more accurate in recognizing angry prosody in PPC sentences. These findings suggest that auditory expertise characterizing extensive musical training may impact different stages of vocal emotional processing.
Resumo:
The current study on German investigates Event-Related brain Potentials (ERPs) for the perception of sentences with intonations which are infrequent (i.e. vocatives) or inadequate in daily conversation. These ERPs are compared to the processing correlates for sentences in which the syntax-to-prosody relations are congruent and used frequently during communication. Results show that perceiving an adequate but infrequent prosodic structure does not result in the same brain responses as encountering an inadequate prosodic pattern. While an early negative-going ERP followed by an N400 were observed for both the infrequent and the inadequate syntax-to-prosody association, only the inadequate intonation also elicits a P600.
Resumo:
Working memory, the ability to store and simultaneously manipulate information, is affected in several neuropsychiatric disorders which lead to severe cognitive and functional deficits. An electrophysiological marker for this process could help identify early cerebral function abnormalities. In subjects performing working memory-specific n-back tasks, event-related potential analysis revealed a positive-negative waveform (PNwm) component modulated in amplitude by working memory load. It occurs in the expected time range for this process, 140-280 ms after stimulus onset, superimposed on the classical P200 and N200 components. Independent Component Analysis extracted two functional components with latencies and topographical scalp distributions similar to the PNwm. Our results imply that the PNwm represents a new electrophysiological index for working memory load in humans.
Resumo:
Previous electrophysiological studies revealed that human faces elicit an early visual event-related potential (ERP) within the occipito-temporal cortex, the N170 component. Although face perception has been proposed to rely on automatic processing, the impact of selective attention on N170 remains controversial both in young and elderly individuals. Using early visual ERP and alpha power analysis, we assessed the influence of aging on selective attention to faces during delayed-recognition tasks for face and letter stimuli, examining 36 elderly and 20 young adults with preserved cognition. Face recognition performance worsened with age. Aging induced a latency delay of the N1 component for faces and letters, as well as of the face N170 component. Contrasting with letters, ignored faces elicited larger N1 and N170 components than attended faces in both age groups. This counterintuitive attention effect on face processing persisted when scenes replaced letters. In contrast with young, elderly subjects failed to suppress irrelevant letters when attending faces. Whereas attended stimuli induced a parietal alpha band desynchronization within 300-1000 ms post-stimulus with bilateral-to-right distribution for faces and left lateralization for letters, ignored and passively viewed stimuli elicited a central alpha synchronization larger on the right hemisphere. Aging delayed the latency of this alpha synchronization for both face and letter stimuli, and reduced its amplitude for ignored letters. These results suggest that due to their social relevance, human faces may cause paradoxical attention effects on early visual ERP components, but they still undergo classical top-down control as a function of endogenous selective attention. Aging does not affect the face bottom-up alerting mechanism but reduces the top-down suppression of distracting letters, possibly impinging upon face recognition, and more generally delays the top-down suppression of task-irrelevant information.
Resumo:
Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.
Resumo:
This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial"s congruence in current interference. To this end, 17 low math-anxious (LMA)and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information