975 resultados para Estrogen Antagonists
Resumo:
Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.
Resumo:
Objectives were to investigate progesterone concentrations and fertility comparing 2 different intervals from PGF2α treatment and induced ovulation in an estrogen-based ovulation synchronization protocol for timed artificial insemination (TAI) or timed embryo transfer (TET) in lactating dairy cows. A total of 1,058 lactating Holstein cows [primiparous (n=371) and multiparous (n=687)], yielding 34.1±0.33 kg of milk/d at various days in milk were randomly assigned to receive treatment with PGF2α on either d 7 or 8 of the following protocol: d 0: 2mg of estradiol benzoate + controlled internal drug release device; d 8: controlled internal drug release device removal + 1.0mg of estradiol cypionate; d 10: TAI or d 17: TET. Only cows with a corpus luteum at d 17 received an embryo and all cows received GnRH at TET. Pregnancy diagnoses were performed by detection (transrectal ultrasonography) of an embryo on d 28 or a fetus on d 60. Fertility [pregnancy per artificial insemination (P/AI) or pregnancy per embryo transfer (P/ET)] was affected by breeding technique (AI vs. ET) and time of PGF2α treatment (d 7 vs. 8) at the 28-d pregnancy diagnosis for TAI [32.9% (238) vs. 20.6% (168)] and TET cows [47% (243) vs. 40.7% (244)] and at the 60-d pregnancy diagnosis for TAI [30% (238) vs. 19.2% (168)] and TET cows [37.9% (243) vs. 33.5% (244)]. The progesterone (P4) concentration at d 10 altered fertility in TAI cows, with higher P/AI in cows with P4 concentration <0.1 ng/mL compared with cows with P4 concentration ≥0.1 ng/mL, and in ET cows, with higher P/ET in cows with P4 concentration <0.22 ng/mL compared with cows with P4 concentration ≥0.22 ng/mL. Prostaglandin F2α treatment at d 7 increased the percentage of cows with P4 <0.1 ng/mL on d 10 [39.4 (85) vs. 23.2 (54)]. Reducing the period between PGF2α and TAI from 72 to 48h in dairy cows resulted in a clear reduction in fertility in cows bred by TAI and a subtle negative effect in cows that received TET. The earlier PGF2α treatment benefits are most likely mediated through gamete transport, fertilization, or early embryo development and a more subtle effect of earlier PGF2α treatment that may be mediated through changes in the uterine or hormonal environment that manifests itself after ET on d 7. © 2013 American Dairy Science Association.
Resumo:
The association of genetic polymorphism in the estrogen receptor alpha (ERα) gene and risk for diseases including breast cancer (BC) has been the subject of great interest. Objective: Checking on women with high breast density after menopause, the frequency of the Pvull and Xbal polymorphisms of the ERα gene and the correlation between them and the known risk factors for breast cancer. Method: Observational study with 308 women between 45 and 65 years old with high breast density, without hormonal therapy, menstruation for a year or more, breast and ovarian cancer history. It was characterized in clinical history and physical examination: menarche, menopause, parity, family history of BC, smoking, alcohol intake and body mass index. Results: The allelic and genotypic frequencies for ERα-Pvull and Xbal: p=43.99%; p=56.01%; pp=32.14%; Pp=47.73% and PP=20.13%; X=41.56%; x=58.44%; xx=33.44%; Xx=50.00% and XX=16.56%, respectively. The most frequent risk factors for BC: menarche before 12 years old (35.38%), nulliparity or first child after 28 years old (41.66%), family history of BC (19.16%) and overweight/obesity (62.01%). Conclusion: Allelic and genotypic distribution similar to literature. The risk factors for BC were more prevalent in women with high breast density but without significant associations with these polymorphisms. © 2013 Informa UK Ltd. All rights reserved.
Resumo:
The objective of this study was to compare a GnRH-based to an estrogen/progesterone (E2/P4)-based protocol for estrous cycle synchronization and fixed timed artificial insemination (TAI), both designed for synchronization of ovulation and to reduce the period from follicular emergence until ovulation in cows with a synchronized follicular wave. A total of 1,190 lactating Holstein cows (primiparous: n = 685 and multiparous: n = 505) yielding 26.5 ± 0.30 kg of milk/d at 177 ± 5.02 d in milk were randomly assigned to receive one of the following programs: 5-d Cosynch protocol [d -8: controlled internal drug release (CIDR) + GnRH; d -3: CIDR removal + PGF2α; d -2: PGF2α; d 0: TAI + GnRH] or E2/P4 protocol (d -10: CIDR + estradiol benzoate; d -3: PGF2α; d -2: CIDR removal + estradiol cypionate; d 0: TAI). Rectal temperature and circulating progesterone (P4) were measured on d -3, -2, 0 (TAI), and 7. The estrous cycle was considered to be synchronized when P4 was ≥1.0 ng/mL on d 7 in cows that had luteolysis (P4 ≤0.4 ng/mL on d 0). To evaluate the effects of heat stress, cows were classified by number of heat stress events: 0, 1, and 2-or-more measurements of elevated body temperature (≥39.1°C). Pregnancy success (pregnancy per artificial insemination, P/AI) was determined at d 32 and 60 after TAI. The cows in the 5-d Cosynch protocol had increased circulating P4 at the time of PGF2α injection (2.66 ± 0.13 vs. 1.66 ± 0.13 ng/mL). The cows in the E2/P4 protocol were more likely to be detected in estrus (62.8 vs. 43.4%) compared with the cows in the 5-d Cosynch protocol, and expression of estrus improved P/AI in both treatments. The cows in the 5-d Cosynch protocol had greater percentage of synchronized estrous cycle (78.2%), compared with cows in the E2/P4 protocol (70.7%). On d 60, the E2/P4 protocol tended to improve P/AI (20.7 vs. 16.7%) and reduced pregnancy loss from 32 to 60 d (11.0 vs. 19.6%), compared with the 5-d Cosynch protocol. In cows with their estrous cycle synchronized, the E2/P4 protocol had greater P/AI (25.6 vs. 17.7%) on d 60 and lower pregnancy loss from 32 to 60 d (6.7 vs. 21.7%) compared with cows in the 5-d Cosynch protocol. Follicle diameter affected pregnancy loss from 32 to 60 d only in the cows in the 5-d Cosynch protocol, with smaller follicles resulting in greater pregnancy loss. Pregnancy per AI at d 60 was different between protocols in the cows with 2 or more measurements of heat stress (5-d Cosynch = 12.2% vs. E2/P4 = 22.8%), but not in the cows without or with 1 heat stress measurement. In conclusion, the 5-d Cosynch protocol apparently produced better estrous cycle synchronization than the E2/P4 protocol but did not improve P/AI. The potential explanation for these results is that increased E2 concentrations during the periovulatory period can improve pregnancy success and pregnancy maintenance, and this effect appears to be greatest in heat-stressed cows when circulating E2 may be reduced. © 2013 American Dairy Science Association.
Resumo:
Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid. © 2013 Resende et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibroblasts from a patient with GO before (controls) and after treatment with 10 nM and 100 nM dexamethasone (DEX). Orbital fibroblasts showed ERA gene expression. In the cells treated with 10 nM and 100 nM DEX, ERA gene expression was, respectively, 85% higher and 74% lower, than in the control group. We concluded that ERA gene expression is found in the orbital fibroblasts of patient with GO, which may be affected by glucocorticoids in a dose-related manner. Arch Endocrinol Metab. 2015;59(3):273-6
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)