339 resultados para Equacoes de schrodinger
Resumo:
We examine two-component Gross-Pitaevskii equations with nonlinear and linear couplings, assuming self-attraction in one species and self-repulsion in the other, while the nonlinear inter-species coupling is also repulsive. For initial states with the condensate placed in the self-attractive component, a sufficiently strong linear coupling switches the collapse into decay (in the free space). Setting the linear-coupling coefficient to be time-periodic (alternating between positive and negative values, with zero mean value) can make localized states quasi-stable for the parameter ranges considered herein, but they slowly decay. The 2D states can then be completely stabilized by a weak trapping potential. In the case of the high-frequency modulation of the coupling constant, averaged equations are derived, which demonstrate good agreement with numerical solutions of the full equations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
An approximate analytical expression for the first two eigenvalues of the Schrodinger equation for the potential V(x) = Ax(4) + Bx(2) is achieved by using the Symanzik scaling symmetry. A kind of symmetry restoration when one of the potential parameters changes conveniently is observed. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.
Resumo:
We investigate, analytically and numerically, families of bright solitons in a system of two linearly coupled nonlinear Schrodinger/Gross-Pitaevskii equations, describing two Bose-Einstein condensates trapped in an asymmetric double-well potential, in particular, when the scattering lengths in the condensates have arbitrary magnitudes and opposite signs. The solitons are found to exist everywhere where they are permitted by the dispersion law. Using the Vakhitov-Kolokolov criterion and numerical methods, we show that, except for small regions in the parameter space, the solitons are stable to small perturbations. Some of them feature self-trapping of almost all the atoms in the condensate with no atomic interaction or weak repulsion is coupled to the self-attractive condensate. An unusual bifurcation is found, when the soliton bifurcates from the zero solution with vanishing amplitude and width simultaneously diverging but at a finite number of atoms in the soliton. By means of numerical simulations, it is found that, depending on values of the parameters and the initial perturbation, unstable solitons either give rise to breathers or completely break down into incoherent waves (radiation). A version of the model with the self-attraction in both components, which applies to the description of dual-core fibers in nonlinear optics, is considered too, and new results are obtained for this much studied system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In order to obtain the quantum-mechanical properties of layered semicondutor structures (quantum well and superlattice structures, for instance), solutions of the Schrodinger equation should be obtained for arbitrary potential profiles. In this paper, it is shown that such problems may be also studied by the Element Free Galerkin Method.