910 resultados para Enzymatic oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The pattern of substrate utilization with diets containing a high or a low proportion of unavailable and slowly digestible carbohydrates may constitute an important factor in the control, time course, and onset of hunger in humans. OBJECTIVE: We tested the hypothesis that isoenergetic diets differing only in their content of unavailable carbohydrates would result in different time courses of total, endogenous, and exogenous carbohydrate oxidation rates. DESIGN: Two diets with either a high (H diet) or a low (L diet) content of unavailable carbohydrates were fed to 14 healthy subjects studied during two 24-h periods in a metabolic chamber. Substrate utilization was assessed by whole-body indirect calorimetry. In a subgroup of 8 subjects, endogenous and exogenous carbohydrate oxidation were assessed by prelabeling the body glycogen stores with [(13)C]carbohydrate. Subjective feelings of hunger were estimated with use of visual analogue scales. RESULTS: Total energy expenditure and substrate oxidation did not differ significantly between the 2 diets. However, there was a significant effect of diet (P: = 0.03) on the carbohydrate oxidation pattern: the H diet elicited a lower and delayed rise of postprandial carbohydrate oxidation and was associated with lower hunger feelings than was the L diet. The differences in hunger scores between the 2 diets were significantly associated with the differences in the pattern of carbohydrate oxidation among diets (r = -0.67, P: = 0. 006). Exogenous and endogenous carbohydrate oxidation were not significantly influenced by diet. CONCLUSIONS: The pattern of carbohydrate utilization is involved in the modulation of hunger feelings. The greater suppression of hunger after the H diet than after the L diet may be helpful, at least over the short term, in individuals attempting to better control their food intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ontogenetic changes in digestive capabilities were analyzed in larvae and first juveniles of the spider crab Maja brachydactyla. Activities of five proteinases (total proteases, trypsin, chymotrypsin, pepsin-like and aminopeptidase), three carbohydrases (amylase, maltase and chitinase), an esterase and an alkaline phosphatase were studied to evaluate digestive enzyme profiles of the species. Both quantitative (spectrophotometry and fluorometry) and qualitative (SDS-PAGE) approaches were used. All assayed enzymes were active from hatching (zoea I-ZI) throughout larval development and in first juveniles. Significant variations during ontogeny were found only in total activities likely as a consequence of digestive system development. Specific activity varied little over ontogeny, being significant only for chitinase. Total proteases, trypsin and pepsin-like activities showed a similar pattern of increase as larval ontogeny advanced, decreasing significantly in juveniles. Chymotrypsin continued to increase, showing maximum activity after metamorphosis. Proteinase zymograms confirmed strong proteolytic activity in first zoeas, with increasing bands over the course of ontogeny, decreasing after metamorphosis. A group of bands with high molecular mass was specific to larval stages. Amylase and maltase showed a parallel pattern of continuous increase of total activity as development advanced. Gel-SDS-PAGE showed unchanged patterns of amylase activity in first zoeas of different ages and the most complex set of bands during larval ontogeny in second zoea. Esterase total activity increased significantly as ZI's aged likely reflecting introduction of a lipid-enriched diet. The importance of lipid accumulation at the beginning of ontogeny was also confirmed by the protease/esterase and amylase/esterase activity ratios, which decreased from hatch to late ZI and might be explained as an adaptation, ensuring the next molt. The results suggest that larvae of M. brachydactyla are capable of digesting a variety of dietary substrates as soon as they hatch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a retrospective study, we examined several determinants of basal fat oxidation in 720 healthy Caucasian volunteers. Adult men (n = 427) and women (n = 293) were characterized for resting energy expenditure and substrate oxidation by indirect calorimetry (after a 12-h overnight fast), peak O2 consumption by a treadmill test to exhaustion, body composition by hydrodensitometry, food intake from a 3-day food diary, and hormonal status by fasting hormone concentrations. Fat oxidation was negatively correlated with fat mass in men (r = -0.11; P < 0.05), but no statistical relationship was found in women. In a stepwise multiple regression analysis, fat oxidation was best predicted by peak O2 consumption and fat-free mass in men (model R2 = 0.142) and by free thyroxine, fat-free mass, and fasting insulin in women (model R2 = 0.153). Relative rates of fat oxidation (fat oxidation adjusted for differences in resting energy expenditure) were not correlated with fat mass in either gender. Women showed a lower rate of basal fat oxidation (both absolute and adjusted) than did men. Our results show that fat oxidation is not greater in individuals with a greater fat mass. Furthermore, our results support a sexual dimorphism in basal rates of fat oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori is the most common gastric bacteria of human beings. Animal-borne helicobacter have been associated with gastritis, ulceration, and gastric mucosa-associated lymphoid-tissue lymphoma in people. We attempted to identify the species of Helicobacter spp. that infect human beings in north Paraná, Brazil. Samples of gastric mucosa from 38 dyspeptic patients were analyzed by optic microscopy on silver stained slides, polimerase chain reaction (PCR), and enzymatic cleavage. Genus and species-specific primers to H. pylori, H. heilmannii, H. felis, and consensual primers to H. bizzozeronii or H. salomonis were used. The PCR products were submitted to enzymatic cleavage by VspI (Helicobacter spp. product) and HinfI (species products) enzymes. Thirty-two out of 38 patients evaluated had 3.2 to 5 µm long bacteria that resembled H. pylori in Warthin-Starry stained slides and were positive to the genus Helicobacter by PCR. In 30 of these patients the bacteria were identified as H. pylori. Two samples positive by silver stain were negative to all species tested by PCR. None of the 38 samples was positive to animal-origin helicobacter species. These results show that PCR and enzymatic restriction are practical methods to identify the species of helicobacters present in gastric mucosa of human beings. People in north Paraná appear to be infected mostly with H. pylori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To see whether a fat-rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. RESEARCH METHODS AND PROCEDURES: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low-fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high-fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by indirect calorimetry. RESULTS: Fat oxidation was not significantly different after the two meals [LF, 31 +/- 9 vs. HF, 35 +/- 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 +/- 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 +/- 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 +/- 12 vs. 29 +/- 9 g/10.5 hours, p < 0,05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 +/- 0.7 vs. 1.5 +/- 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. DISCUSSION: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short-term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary cultures of cardiomyocytes represent a useful model for analyzing cardiac cell biology as well as pathogenesis of several cardiovascular disorders. Our aim was to standardize protocols for determining the damage of cardiac cells cultured in vitro by measuring the creatine kinase and its cardiac isotype and lactate dehydrogenase activities in the supernatants of mice cardiomyocytes submitted to different protocols of cell lysis. Our data showed that due to its higher specificity, the cardiac isotype creatine kinase was the most sensitive as compared to the others studied enzymatic markers, and can be used to monitor and evaluate cardiac damage in in vitro assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM-1·min-1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different outcomes of the effect of catechin-caffeine mixtures and caffeine-only supplementation on energy expenditure and fat oxidation have been reported in short-term studies. Therefore, a meta-analysis was conducted to elucidate whether catechin-caffeine mixtures and caffeine-only supplementation indeed increase thermogenesis and fat oxidation. First, English-language studies measuring daily energy expenditure and fat oxidation by means of respiration chambers after catechin-caffeine mixtures and caffeine-only supplementation were identified through PubMed. Six articles encompassing a total of 18 different conditions fitted the inclusion criteria. Second, results were aggregated using random/mixed-effects models and expressed in terms of the mean difference in 24 h energy expenditure and fat oxidation between the treatment and placebo conditions. Finally, the influence of moderators such as BMI and dosage on the results was examined as well. The catechin-caffeine mixtures and caffeine-only supplementation increased energy expenditure significantly over 24 h (428.0 kJ (4.7%); P < 0.001 and 429.1 kJ (4.8%); P < 0.001, respectively). However, 24 h fat oxidation was only increased by catechin-caffeine mixtures (12.2 g (16.0%); P < 0.02 and 9.5 g (12.4%); P = 0.11, respectively). A dose-response effect on 24 h energy expenditure and fat oxidation occurred with a mean increase of 0.53 kJ mg(-1) (P < 0.01) and 0.02 g mg(-1) (P < 0.05) for catechin-caffeine mixtures and 0.44 kJ mg(-1) (P < 0.001) and 0.01 g mg(-1) (P < 0.05) for caffeine-only. In conclusion, catechin-caffeine mixtures or a caffeine-only supplementation stimulates daily energy expenditure dose-dependently by 0.4-0.5 kJ mg(-1) administered. Compared with placebo, daily fat-oxidation was only significantly increased after catechin-caffeine mixtures ingestion.