819 resultados para Energy consumption data sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the system developed to promote the rational use of electric energy among consumers and, thus, increase the energy efficiency. The goal is to provide energy consumers with an application that displays the energy consumption/production profiles, sets up consuming ceilings, defines automatic alerts and alarms, compares anonymously consumers with identical energy usage profiles by region and predicts, in the case of non-residential installations, the expected consumption/production values. The resulting distributed system is organized in two main blocks: front-end and back-end. The front-end includes user interface applications for Android mobile devices and Web browsers. The back-end provides data storage and processing functionalities and is installed in a cloud computing platform - the Google App Engine - which provides a standard Web service interface. This option ensures interoperability, scalability and robustness to the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Building Energy Data Visualization is a way to detect performance problems in commercialbuildings. By placing sensors in a building that collects data from example, air temperature and electricalpower, then makes it possible to calculate the data in Data Visualization software. This softwaregenerates visual diagrams so the building manager or building operator can see if for example thepower consumption is to high.A first step (before sensors are installed in a building) to see how the energy consumption is in abuilding can be to use a Benchmarking Tool. There is a number of Benchmarking Tools that is availablefor free on the Internet. Each tool have a bit different approach, but they all show how much energyconsumption there is in a building compared to other similar buildings.In this study a new web design for the benchmarking tool CalARCH has been developed. CalARCHis developed at the Berkeley Lab in Berkeley, California, USA. CalARCH uses data collected only frombuildings in California, and is only for comparing buildings in California with other similar buildingsin the state.Five different versions of the web site were made. Then a web survey was done to determine whichversion would be the best for CalARCH. The results showed that Version 5 and Version 3 was the best.Then a new version was made, based on these two versions. This study was made at the LawrenceBerkeley Laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy consumption in data centers is nowadays a critical objective because of its dramatic environmental and economic impact. Over the last years, several approaches have been proposed to tackle the energy/cost optimization problem, but most of them have failed on providing an analytical model to target both the static and dynamic optimization domains for complex heterogeneous data centers. This paper proposes and solves an optimization problem for the energy-driven configuration of a heterogeneous data center. It also advances in the proposition of a new mechanism for task allocation and distribution of workload. The combination of both approaches outperforms previous published results in the field of energy minimization in heterogeneous data centers and scopes a promising area of research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of the analysis of satellite imagery to study light pollution in Spain. Both calibrated and non-calibrated DMSP-OLS images were used. We describe the method to scale the non-calibrated DMSP-OLS images which allows us to use differential photometry techniques in order to study the evolution of the light pollution. Population data and DMSP-OLS satellite calibrated images for the year 2006 were compared to test the reliability of official statistics in public lighting consumption. We found a relationship between the population and the energy consumption which is valid for several regions. Finally the true evolution of the electricity consumption for street lighting in Spain from 1992 to 2010 was derived; it has been doubled in the last 18 years in most of the provinces. (C) 2013 Elsevier Ltd. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information technologies (IT) currently represent 2% of CO2 emissions. In recent years, a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial, specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation of the proposal in addition to identification of the minimum hardware profile required to support the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"DOE/EIA-0031/1. CRN78030l-00087. SP-MN."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production.In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming.The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hotel chains have access to a treasure trove of “big data” on individual hotels’ monthly electricity and water consumption. Benchmarked comparisons of hotels within a specific chain create the opportunity to cost-effectively improve the environmental performance of specific hotels. This paper describes a simple approach for using such data to achieve the joint goals of reducing operating expenditure and achieving broad sustainability goals. In recent years, energy economists have used such “big data” to generate insights about the energy consumption of the residential, commercial, and industrial sectors. Lessons from these studies are directly applicable for the hotel sector. A hotel’s administrative data provide a “laboratory” for conducting random control trials to establish what works in enhancing hotel energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have been undertaken or attempted by industry and academe to address the need for lodging industry carbon benchmarking. However, these studies have focused on normalizing resource use with the goal of rating or comparing all properties based on multivariate regression according to an industry-wide set of variables, with the result that data sets for analysis were limited. This approach is backward, because practical hotel industry benchmarking must first be undertaken within a specific location and segment.1 Therefore, the CHSB study’s goal is to build a representative database providing raw benchmarks as a base for industry comparisons.2 These results are presented in the CHSB2016 Index, through which a user can obtain the range of benchmarks for energy consumption, water consumption, and greenhouse gas emissions for hotels within specific segments and geographic locations.