845 resultados para Energy Engineering and Power Technology
Resumo:
While the WTO agreements do not regulate the use of biotechnology per se, their rules can have a profound impact on the use of the technology for both commercial and non-commercial purposes. This book seeks to identify the challenges to international trade regulation that arise from biotechnology. The contributions examine whether existing international obligations of WTO Members are appropriate to deal with the issues arising for the use of biotechnology and whether there is a need for new international legal instruments, including a potential WTO Agreement on Biotechnology. They combine various perspectives on and topics relating to genetic engineering and trade, including human rights and gender; intellectual property rights; traditional knowledge and access and benefit sharing; food security, trade and agricultural production and food safety; and medical research, cloning and international trade.
Resumo:
This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.
Resumo:
The design of upconversion phosphors with higher quantum yield requires a deeper understanding of the detailed energy transfer and upconversion processes between active ions inside the material. Rate equations can model those processes by describing the populations of the energy levels of the ions as a function of time. However, this model presents some drawbacks: energy migration is assumed to be infinitely fast, it does not determine the detailed interaction mechanism (multipolar or exchange), and it only provides the macroscopic averaged parameters of interaction. Hence, a rate equation model with the same parameters cannot correctly predict the time evolution of upconverted emission and power dependence under a wide range of concentrations of active ions. We present a model that combines information about the host material lattice, the concentration of active ions, and a microscopic rate equation system. The extent of energy migration is correctly taken into account because the energy transfer processes are described on the level of the individual ions. This model predicts the decay curves, concentration, and excitation power dependences of the emission. This detailed information can be used to predict the optimal concentration that results in the maximum upconverted emission.
Resumo:
The widespread use of wireless enabled devices and the increasing capabilities of wireless technologies has promoted multimedia content access and sharing among users. However, the quality perceived by the users still depends on multiple factors such as video characteristics, device capabilities, and link quality. While video characteristics include the video time and spatial complexity as well as the coding complexity, one of the most important device characteristics is the battery lifetime. There is the need to assess how these aspects interact and how they impact the overall user satisfaction. This paper advances previous works by proposing and validating a flexible framework, named EViTEQ, to be applied in real testbeds to satisfy the requirements of performance assessment. EViTEQ is able to measure network interface energy consumption with high precision, while being completely technology independent and assessing the application level quality of experience. The results obtained in the testbed show the relevance of combined multi-criteria measurement approaches, leading to superior end-user satisfaction perception evaluation .
Resumo:
Background Energy Policy is one of the main drivers of Transport Policy. A number of strategies to reduce current energy consumption trends in the transport sector have been designed over the last decades. They include fuel taxes, more efficient technologies and changing travel behavior through demand regulation. But energy market has a high degree of uncertainty and the effectiveness of those policy options should be assessed. Methods A scenario based assessment methodology has been developed in the frame of the EU project STEPS. It provides an integrated view of Energy efficiency, environment, social and competitiveness impacts of the different strategies. It has been applied at European level and to five specific Regions. Concluding remarks The results are quite site specific dependent. However they show that regulation measures appear to be more effective than new technology investments. Higher energy prices could produce on their turn a deterioration of competitiveness and a threat for social goals.
Resumo:
This paper studies the energy consumption and subsequent CO2 emissions of road highway transportation under three toll systems in Spain for four categories of vehicles: cars, vans, buses and articulated trucks. The influence of toll systems is tested for a section of AP-41 highway between Toledo and Madrid. One system is free flow, other is traditional stop and go and the last toll system operates with an electronic toll collection (ETC) technology. Energy consumption and CO2 emissions were found to be closely related to vehicle mass, wind exposure, engine efficiency and acceleration rate. These parameters affect, directly or indirectly, the external forces which determine the energy consumption. Reducing the magnitude of these forces through an appropriate toll management is an important way of improving the energy performance of vehicles. The type of toll system used can have a major influence on the energy efficiency of highway transportation and therefore it is necessary to consider free flow.
Resumo:
Full paper reserch
Resumo:
This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.
Resumo:
Performances of ED-tethers using either spherical collectors or bare tethers for drag, thrust, or power generation, are compared. The standard Parker-Murphy model of current to a full sphere, with neither space-charge nor plasmamotion effects considered, but modified to best fit TSS1R results, is used (the Lam, Al'pert/Gurevich space-charge limited model will be used elsewhere) In the analysis, the spherical collector is assumed to collect current well beyond its random-current value (thick-heath). Both average current in the bare-tether and current to the sphere are normalized with the short-circuit current in the absence of applied power, allowing a comparison of performances for all three applications in terms of characteristic dimensionless numbers. The sphere is always substantially outperformed by the bare-tether if ohmic effects are weak, though its performance improves as such effects increase.
Resumo:
Remote reprogramming capabilities are one of the major concerns in WSN platforms due to the limitations and constraints that low power wireless nodes poses, especially when energy efficiency during the reprogramming process is a critical factor for extending the battery life of the devices. Moreover, WSNs are based on low-rate protocols in which as greater the amount of data is sent, the more the possibility to lose packets during the transmitting process is. In order to overcome these limitations, in this work a novel on-the-fly reprogramming technique for modifying and updating the application running on the wireless sensor nodes is designed and implemented, based on a partial reprogramming mechanism that significantly reduces the size of the files to be downloaded to the nodes, therefore diminishing their power/time consumption. This powerful mechanism also addresses multi-experimental capabilities because it provides the possibility to download, manage, test and debug multiple applications into the wireless nodes, based on a memory map segmentation of the core. Being an on-the-fly reprogramming process, no additional resources to store and download the configuration file are needed.
Resumo:
The Smartcity Málaga project is one of Europe?s largest ecoefficient city initiatives. The project has implemented a field trial in 50 households to study the effects of energy monitoring and management technologies on the residential electricity consumption. This poster presents some lessons learned on energy consumption trends, smart clamps reliability and the suitability of power contracted by users, obtained after six months of data analysis.
Resumo:
In the framework of the ITER Control Breakdown Structure (CBS), Plant System Instrumentation & Control (I&C) defines the hardware and software required to control one or more plant systems [1]. For diagnostics, most of the complex Plant System I&C are to be delivered by ITER Domestic Agencies (DAs). As an example for the DAs, ITER Organization (IO) has developed several use cases for diagnostics Plant System I&C that fully comply with guidelines presented in the Plant Control Design Handbook (PCDH) [2]. One such use case is for neutron diagnostics, specifically the Fission Chamber (FC), which is responsible for delivering time-resolved measurements of neutron source strength and fusion power to aid in assessing the functional performance of ITER [3]. ITER will deploy four Fission Chamber units, each consisting of three individual FC detectors. Two of these detectors contain Uranium 235 for Neutron detection, while a third "dummy" detector will provide gamma and noise detection. The neutron flux from each MFC is measured by the three methods: . Counting Mode: measures the number of individual pulses and their location in the record. Pulse parameters (threshold and width) are user configurable. . Campbelling Mode (Mean Square Voltage): measures the RMS deviation in signal amplitude from its average value. .Current Mode: integrates the signal amplitude over the measurement period
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.