960 resultados para Endothelial disruptions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of gamma-glutamylcysteine synthetase-heavy subunit (gamma-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial complince (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (sem 2.0) % at baseline and 15.5 (sem 1.1) % after isoflavone treatment compared with 12.4 (sem 1.0) % after placebo treatment (P=0.03). NOx increased from 27.7 (sem 2.7) to 31.1 (sem 3.2) mu m after isoflavones treatment compared with 25.4 (sem 1.5) to 20.4 (sem 1.1) mu m after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. Oestrogen is believed to have beneficial effects on endothelial function and may be one of the mechanisms by which premenopausal women are protected against CVD. Decreased NO production and endothelial NO synthase activity, and increased endothelin-1 concentrations, impaired lipoprotein metabolism and increased circulating inflammatory factors result from oestrogen deficiency. Oestrogen acts by binding to oestrogen receptors alpha and beta. Isoflavones have been shown to bind with greater affinity to the latter. Oestrogen replacement therapy is no longer thought to be a safe treatment for prevention of CVD; isoflavones are a possible alternative. Limited evidence from human intervention studies suggests that isoflavones may improve endothelial function, but the available data are not conclusive. Animal studies provide stronger support for a role of isoflavones in the vasculature, with increased vasodilation and endothelial NO synthase activity demonstrated. Cellular mechanisms underlying the effects of isoflavones on endothelial cell function are not yet clear. Possible oestrogen receptor-mediated pathways include modulation of gene transcription, and also non-genomic oestrogen receptor-mediated signalling pathways. Putative non-oestrogenic pathways include inhibition of reactive oxygen species production and up regulation of the protein kinase A pathway (increasing NO bioavailability). Further research is needed to unravel effects of isoflavones on intracellular regulation of the endothelial function. Moreover, there is an urgent need for adequately powered, robustly designed human intervention studies in order to clarify the present equivocal findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During red wine aging, there is a loss of anthocyanins and the formation of various other pigments, so-called vitisins A, which are formed through the chemical interaction of the original anthocyanins with pyruvic acid. The objective of this study was to investigate the antioxidant activities of the most abundant anthocyanins present in red wine (glycosides of delphinidin, petunidin, and malvidin) and their corresponding vitisins A. Anthocyanins exhibited a higher iron reducing as well as 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulfonate) and peroxyl radical scavenging activity than their corresponding vitisins A. Delphinidin showed the highest antioxidant effect of the tested compounds in all of the assays used. Furthermore, we studied the effect of anthocyanins and vitisins A on platelet aggregation and monocyte and endothelial function. Anthocyanins and vitisins did not affect nitric oxide production and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide plus interferon-gamma-activated macrophages. Furthermore, anthocyanins and vitisins did not change collagen-induced platelet aggregation in vitro. However, anthocyanins and to a lesser extent vitisins exhibited protective effects against TNF-alpha-induced monocyte chemoattractant protein production in primary human endothelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cells are primary targets for pro-atherosclerotic stressors such as oxidized LDL (ox-LDL). The isoflavone genistein, on the other hand, is suggested to prevent a variety of processes underlying atherosclerosis and cardiovascular diseases. By analyzing the proteome of EA(.)hy 926 endothelial cells, here we show, that genistein reverses the ox-LDL-induced changes of the steady-state levels of several proteins involved in atherosclerosis. These alterations caused by genistein are functionally linked to the inhibition of ox-LDL induced apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary isoflavones from soy are suggested to protect endothelial cells from damaging effects of endothelial stressors and thereby to prevent atherosclerosis. In search of the molecular targets of isoflavone action, we analyzed the effects of the major soy isoflavone, genistein, on changes in protein expression levels induced by the endothelial stressor homocysteine (Hcy) in EA.hy 926 endothelial cells. Proteins from cells exposed for 24 h to 25 mu M Hcy alone or in combination with 2.5 mu M genistein were separated by two-dimensional gel electrophoresis and those with altered spot intensities were identified by peptide mass fingerprinting, Genistein reversed Hcy-induced changes of proteins involved in metabolism, detoxification, and gene regulation: and some of those effects can be linked functionally to the antiatherosclerotic properties of the soy isoflavone. Alterations of steady-state levels of cytoskeletal proteins by genistein suggested an effect oil apoptosis. As a matter of fact genistein caused inhibition of Hcy-mediated apoptotic cell death as indicated by inhibition of DNA fragmentation and chromatin condensation. In conclusion, proteome analysis allows the rapid identification of cellular target proteins of genistein action in endothelial cells exposed to the endothelial stressor Hcy and therefore enables the identification of molecular pathways of its antiatherosclerotic action

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epidemiological studies suggest that soy consumption contributes to the prevention of coronary heart disease. The proposed anti-atherogenic effects of soy appear to be carried by the soy isoflavones with genistein as the most abundant compound. Aim of the study To identify proteins or pathways by which genistein might exert its protective activities on atherosclerosis, we analyzed the proteomic response of primary human umbilical vein endothelial cells ( HUVEC) that were exposed to the pro-atherosclerotic stressors homocysteine or oxidized low-density lipoprotein (ox-LDL). Methods HUVEC were incubated with physiological concentrations of homocysteine or ox-LDL in the absence and presence of genistein at concentrations that can be reached in human plasma by a diet rich in soy products (2.5 muM) or by pharmacological intervention ( 25 muM). Proteins from HUVEC were separated by two-dimensional polyacrylamide gel electrophoresis and those that showed altered expression level upon genistein treatment were identified by peptide mass fingerprints derived from tryptic digests of the protein spots. Results Several proteins were found to be differentially affected by genistein. The most interesting proteins that were potently decreased by homocysteine treatment were annexin V and lamin A. Annexin V is an antithrombotic molecule and mutations in nuclear lamin A have been found to result in perturbations of plasma lipids associated with hypertension. Genistein at low and high concentrations reversed the stressor-induced decrease of these anti-atherogenic proteins. Ox-LDL treatment of HUVEC resulted in an increase in ubiquitin conjugating enzyme 12, a protein involved in foam cell formation. Treatment with genistein at both doses reversed this effect. Conclusions Proteome analysis allows the identification of potential interactions of dietary components in the molecular process of atherosclerosis and consequently provides a powerful tool to define biomarkers of response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims The Metabolic Syndrome (MetS) is associated with increased cardiovascular risk. Circulating microparticles (MP) are involved in the pathogenesis of atherothrombotic disorders and are raised in individual with CVD. We measured their level and cellular origin in subjects with MetS and analyzed their associations with 1/anthropometric and biological parameters of MetS, 2/inflammation and oxidative stress markers. Methods and results Eighty-eight subjects with the MetS according to the NCEP-ATPIII definition were enrolled in a bicentric study and compared to 27 healthy controls. AnnexinV-positive MP (TMP), MP derived from platelets (PMP), erythrocytes (ErMP), endothelial cells (EMP), leukocytes (LMP) and granulocytes (PNMP) were determined by flow cytometry. MetS subjects had significantly higher counts/μl of TMP (730.6 ± 49.7 vs 352.8 ± 35.6), PMP (416.0 ± 43.8 vs 250.5 ± 23.5), ErMP (243.8 ± 22.1 vs 73.6 ± 19.6) and EMP (7.8 ± 0.8 vs 4.0 ± 1.0) compared with controls. LMP and PNMP were not statistically different between groups. Multivariate analysis demonstrated that each criterion for the MetS influenced the number of TMP. Waist girth was a significant determinant of PMP and EMP level and blood pressure was correlated with EMP level. Glycemia positively correlated with PMP level whereas dyslipidemia influenced EMP and ErMP levels. Interestingly, the oxidative stress markers, plasma glutathione peroxydase and urinary 8-iso-prostaglandin F2 α, independently influenced TMP and PMP levels whereas inflammatory markers did not, irrespective of MP type. Conclusion Increased levels of TMP, PMP, ErMP and EMP are associated with individual metabolic abnormalities of MetS and oxidative stress. Whether MP assessment may represent a marker for risk stratification or a target for pharmacological intervention deserves further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.