891 resultados para Endemic
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.
Resumo:
To reach the goals established by the Institute of Medicine (IOM) and the Centers for Disease Control's (CDC) STOP TB USA, measures must be taken to curtail a future peak in Tuberculosis (TB) incidence and speed the currently stagnant rate of TB elimination. Both efforts will require, at minimum, the consideration and understanding of the third dimension of TB transmission: the location-based spread of an airborne pathogen among persons known and unknown to each other. This consideration will require an elucidation of the areas within the U.S. that have endemic TB. The Houston Tuberculosis Initiative (HTI) was a population-based active surveillance of confirmed Houston/Harris County TB cases from 1995–2004. Strengths in this dataset include the molecular characterization of laboratory confirmed cases, the collection of geographic locations (including home addresses) frequented by cases, and the HTI time period that parallels a decline in TB incidence in the United States (U.S.). The HTI dataset was used in this secondary data analysis to implement a GIS analysis of TB cases, the locations frequented by cases, and their association with risk factors associated with TB transmission. ^ This study reports, for the first time, the incidence of TB among the homeless in Houston, Texas. The homeless are an at-risk population for TB disease, yet they are also a population whose TB incidence has been unknown and unreported due to their non-enumeration. The first section of this dissertation identifies local areas in Houston with endemic TB disease. Many Houston TB cases who reported living in these endemic areas also share the TB risk factor of current or recent homelessness. Merging the 2004–2005 Houston enumeration of the homeless with historical HTI surveillance data of TB cases in Houston enabled this first-time report of TB risk among the homeless in Houston. The homeless were more likely to be US-born, belong to a genotypic cluster, and belong to a cluster of a larger size. The calculated average incidence among homeless persons was 411/100,000, compared to 9.5/100,000 among housed. These alarming rates are not driven by a co-infection but by social determinants. The unsheltered persons were hospitalized more days and required more follow-up time by staff than those who reported a steady housing situation. The homeless are a specific example of the increased targeting of prevention dollars that could occur if TB rates were reported for specific areas with known health disparities rather than as a generalized rate normalized over a diverse population. ^ It has been estimated that 27% of Houstonians use public transportation. The city layout allows bus routes to run like veins connecting even the most diverse of populations within the metropolitan area. Secondary data analysis of frequent bus use (defined as riding a route weekly) among TB cases was assessed for its relationship with known TB risk factors. The spatial distribution of genotypic clusters associated with bus use was assessed, along with the reported routes and epidemiologic-links among cases belonging to the identified clusters. ^ TB cases who reported frequent bus use were more likely to have demographic and social risk factors associated with poverty, immune suppression and health disparities. An equal proportion of bus riders and non-bus riders were cultured for Mycobacterium tuberculosis, yet 75% of bus riders were genotypically clustered, indicating recent transmission, compared to 56% of non-bus riders (OR=2.4, 95%CI(2.0, 2.8), p<0.001). Bus riders had a mean cluster size of 50.14 vs. 28.9 (p<0.001). Second order spatial analysis of clustered fingerprint 2 (n=122), a Beijing family cluster, revealed geographic clustering among cases based on their report of bus use. Univariate and multivariate analysis of routes reported by cases belonging to these clusters found that 10 of the 14 clusters were associated with use. Individual Metro routes, including one route servicing the local hospitals, were found to be risk factors for belonging to a cluster shown to be endemic in Houston. The routes themselves geographically connect the census tracts previously identified as having endemic TB. 78% (15/23) of Houston Metro routes investigated had one or more print groups reporting frequent use for every HTI study year. We present data on three specific but clonally related print groups and show that bus-use is clustered in time by route and is the only known link between cases in one of the three prints: print 22. (Abstract shortened by UMI.)^
Resumo:
The suite of environments and anthropogenic modifications of sub-Antarctic islands provide key opportunities to improve our understanding of the potential consequences of climate change and biological species invasions on terrestrial ecosystems. The profound impact of human introduced invasive species on indigenous biota, and the facilitation of establishment as a result of changing thermal conditions, has been well documented on the French sub-Antarctic Kerguelen Islands (South Indian Ocean). The present study provides an overview of the vulnerability of sub-Antarctic terrestrial communities with respect to two interacting factors, namely climate change and alien insects. We present datasets assimilated by our teams on the Kerguelen Islands since 1974, coupled with a review of the literature, to evaluate the mechanism and impact of biological invasions in this region. First, we consider recent climatic trends of the Antarctic region, and its potential influence on the establishment, distribution and abundance of alien insects, using as examples one fly and one beetle species. Second, we consider to what extent limited gene pools may restrict alien species' colonisations. Finally, we consider the vulnerability of native communities to aliens using the examples of one beetle, one fly, and five aphid species taking into consideration their additional impact as plant virus vectors. We conclude that the evidence assimilated from the sub-Antarctic islands can be applied to more complex temperate continental systems as well as further developing international guidelines to minimise the impact of alien species.
Resumo:
In coastal waters, Antarctic rhodophytes are exposed to harsh environmental conditions throughout the year, like low water temperatures ranging from -1.8°C to 2°C and high light during the summer season. Photosynthetic performance under these conditions may be affected by slowed down enzymatic reactions and the increased generation of reactive oxygen species. The consequence might be a chronic photoinhibition of photosynthetic primary reactions related to increased fragmentation of the D1 reaction centre protein in photosystem II. It is hypothesized that changes in lipid composition of biomembranes may represent an adaptive trait to maintain D1 turnover in response to temperature variation. The interactive effects of high light and low temperature were studied on an endemic Antarctic red alga, Palmaria decipiens, sampled from two shore levels, intertidal and subtidal, and exposed to mesocosm experiments using two levels of natural solar radiation and two different temperature regimes (2-5°C and 5-10°C). During the experimental period of 23 days, maximum quantum yield of photosynthesis decreased in all treatments, with the intertidal specimens exposed at 5-10°C being most affected. On the pigment level, a decreasing ratio of phycobiliproteins to chlorophyll a was found in all treatments. A pronounced decrease in D1 protein concentration occurred in subtidal specimens exposed at 2-5°C. Marked changes in lipid composition, i.e. the ratio of saturated to unsaturated fatty acids, indicated an effective response of specimens to temperature change. Results provide new insights into mechanisms of stress adaptation in this key species of shallow Antarctic benthic communities.
Resumo:
Lupinus mariae-josephi is a recently described endemic Lupinus species from a small area in Eastern Spain where it thrives in soils with active lime and high pH. The L. mariae-josephi root symbionts were shown to be very slow-growing bacteria with different phenotypic and symbiotic characteristics from those of Bradyrhizobium strains nodulating other Lupinus. Their phylogenetic status was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and showed the existence of a distinct evolutionary lineage for L. mariae-josephi that also included Bradyrhizobium jicamae. Within this lineage, the tested isolates clustered in three different sub-groups that might correspond to novel sister Bradyrhizobium species. These core gene analyses consistently showed that all the endosymbiotic bacteria isolated from other Lupinus species of the Iberian Peninsula were related to strains of the B. canariense or B. japonicum lineages and were separate from the L. mariae-josephi isolates. Phylogenetic analysis based on nodC symbiotic gene sequences showed that L. mariae-josephi bacteria also constituted a new symbiotic lineage distant from those previously defined in the genus Bradyrhizobium. In contrast, the nodC genes of isolates from other Lupinus spp. from the Iberian Peninsula were again clearly related to the B. canariense and B. japonicum bv. genistearum lineages. Speciation of L. mariae-josephi bradyrhizobia may result from the colonization of a singular habitat by their unique legume host.
Resumo:
Lupinus mariae-josephi is a recently described species (Pascual, 2004) able to grow in soils with high pH and active lime content in the Valencia province (Spain). L. mariae-josephi endosymbionts are extremely slowgrowing bacteria with genetic and symbiotic characteristics that differentiate them from Bradyrhizobium strains nodulating Lupinus spp. native of the Iberian Peninsula and adapted to grow in acid soils. Cross-inoculation experiments revealed that all the endosymbiotic isolates from L. mariae-josephi tested are legume-host selective and are unable to nodulate species such as L. angustifolius, and L. luteus. In contrast, Bradyrhizobium strains from Lupinus spp. tested were able to nodulate L. mariae-josephi, although the nodules fixed nitrogen inefficiently. Phylogenetic analysis was performed with housekeeping genes (rrn, glnII, recA, atpD) and nodulation gene nodC. Housekeeping gene phylogeny revealed that L. mariae-josephi rhizobia form a strongly supported monophyletic group within Bradyrhizobium genus. This cluster also includes B. jicamae and certain strains of B. elkanii. Contrarily, isolates from other Lupinus spp. native of the Iberian Peninsula were grouped mainly within B. canariense and two B. japonicum lineages. Phylogenetic analysis of L. mariae-josephi isolates based on the nodC symbiotic gene defined a solid clade close to isolates from Algerian Retama spp. and to fast-growing rhizobia.
Resumo:
Astragalus gines-lopezii Talavera, Podlech, Devesa & F.M.Vázquez (Fabaceae) is a threatened endemic species with a distribution restricted to a very small area in Badajoz Province (Extremadura Region, SW Spain) and only 2 populations are known. This species was catalogued in the ?Endangered? category in the 2008 Red List and the 2010 Threatened Spanish Vascular Flora List. Despite its status as an endangered species, at present very little is known about the distribution, census, and reproductive biology of this species. In this study we have carried out an exhaustive census of A. gines-lopezii , and we have evaluated the production of flowers, fruits, and seeds and the existence or not of intra- and interpopulation variability in seed germination. Results have highlighted the high reproductive capacity of this species on the basis of a high production of flowers, fruits, and seeds. Mechanical scarification of seeds was effective for increasing germination. Thus, initial germination (22%?60%) was increased to 97%?99% when seeds were rubbed with sandpapers. A high intra- and interpopulation variability in seed germination was found in this species. A. gines-lopezii produces seeds with different degrees of physical dormancy, varying this grade among different individuals within a population.
Resumo:
Astragalus gines-lopezii Talavera, Podlech, Devesa & F.M.Vazquez (Fabaceae) is a threatened endemic species with a distribution restricted to a very small area in Badajoz Province (Extremadura Region, SW Spain) and only 2 populations are known.This species was catalogued in the "Endangered" category in the 2008 Red List and the 2010 Threatened Spanish Vascular Flora List. Despite its status as an endangered species, at present very little is known about the distribution, census, and reproductive biology of this species. In this study we have carried out anexhaustive census of A. gines-lopezii, and we have evaluated the production of flowers, fruits, and seeds and the existence or not of intra- and interpopulation variability in seed germination. Results have highlighted the high reproductive capacity of this species on the basis of a high production of flowers, fruits, and seeds. Mechanical scarification of seeds was effective for increasing germination. Thus, initial germination (22%-60%) was increased to 97%-99% when seeds were rubbed with sandpapers. A high intra- and interpopulation variability in seed germination was found in this species. A. gines-lopezii produces seeds with different degrees of physical dormancy, varying this grade among different individuals within a population.
Resumo:
The prevalence of woody species in oceanic islands has attracted the attention of evolutionary biologists for more than a century. We used a phylogeny based on sequences of the internal-transcribed spacer region of nuclear ribosomal DNA to trace the evolution of woodiness in Pericallis (Asteraceae: Senecioneae), a genus endemic to the Macaronesian archipelagos of the Azores, Madeira, and Canaries. Our results show that woodiness in Pericallis originated independently at least twice in these islands, further weakening some previous hypotheses concerning the value of this character for tracing the continental ancestry of island endemics. The same data suggest that the origin of woodiness is correlated with ecological shifts from open to species-rich habitats and that the ancestor of Pericallis was an herbaceous species adapted to marginal habitats of the laurel forest. Our results also support Pericallis as closely related to New World genera of the tribe Senecioneae.
Resumo:
In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria.
Resumo:
Identification of the progenitors of plants endemic to oceanic islands often is complicated by extreme morphological divergence between island and continental taxa. This is especially true for the Hawaiian Islands, which are 3,900 km from any continental source. We examine the origin of Hesperomannia, a genus of three species endemic to Hawaii that always have been placed in the tribe Mutisieae of the sunflower family. Phylogenetic analyses of representatives from all tribes in this family using the chloroplast gene ndhF (where ndhF is the ND5 protein of chloroplast NADH dehydrogenase) indicate that Hesperomannia belongs to the tribe Vernonieae. Phylogenetic comparisons within the Vernonieae using sequences of both ndhF and the internal transcribed spacer regions of nuclear ribosomal DNA reveal that Hesperomannia is sister to African species of Vernonia. Long-distance dispersal northeastward from Africa to southeast Asia and across the many Pacific Ocean island chains is the most likely explanation for this unusual biogeographic connection. The 17- to 26-million-year divergence time between African Vernonia and Hesperomannia estimated by the DNA sequences predates the age of the eight existing Hawaiian Islands. These estimates are consistent with an hypothesis that the progenitor of Hesperomannia arrived at one of the low islands of the Hawaiian-Emperor chain between the late Oligocene and mid-Miocene when these islands were above sea level. Subsequent to its arrival the southeast Pacific island chains served as steppingstones for dispersal to the existing Hawaiian Islands.