964 resultados para Elsivier, family of printers.
Resumo:
USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-helix-leucine zipper (bHLH-zip) DNA-binding domain. Two different USF genes, termed USF1 and USF2, are ubiquitously expressed in both humans and mice. The USF1 and USF2 proteins contain highly divergent transcriptional activation domains but share extensive homologies in the bHLH-zip region and recognize the same CACGTG DNA motifs. Although the DNA-binding and transcriptional activities of these proteins have been characterized, the biological function of USF is not well understood. Here, focus- and colony-formation assays were used to investigate the potential involvement of USF in the regulation of cellular transformation and proliferation. Both USF1 and USF2 inhibited the transformation of rat embryo fibroblasts mediated by Ras and c-Myc, a bHLH-zip transcription factor that also binds CACGTG motifs. DNA binding was required but not fully sufficient for inhibition of Myc-dependent transformation by USF, since deletion mutants containing only the DNA-binding domains of USF1 or USF2 produced partial inhibition. While the effect of USF1 was selective for Myc-dependent transformation, wild-type USF2 exerted in addition a strong inhibition of E1A-mediated transformation and a strong suppression of HeLa cell colony formation. These results suggest that members of the USF family may serve as negative regulators of cellular proliferation in two ways, one by antagonizing the transforming function of Myc, the other through a more general growth-inhibitory effect.
Resumo:
In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.
Resumo:
Although transforming growth factor beta (TGF-beta) superfamily ligands play critical roles in diverse developmental processes, how cells transduce signals from these ligands is still poorly understood. Cell surface receptors for these ligands have been identified, but their cytoplasmic targets are unknown. We have identified three Caenorhabditis elegans genes, sma-2, sma-3, and sma-4, that have mutant phenotypes similar to those of the TGF-beta-like receptor gene daf-4, indicating that they are required for daf-4-mediated developmental processes. We show that sma-2 functions in the same cells as daf-4, consistent with a role in transducing signals from the receptor. These three genes define a protein family, the dwarfins, that includes the Mad gene product, which participates in the decapentaplegic TGF-beta-like pathway in Drosophila [Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. (1995) Genetics 139, 1347-1358]. The identification of homologous components of these pathways in distantly related organisms suggests that dwarfins may be universally required for TGF-beta-like signal transduction. In fact, we have isolated highly conserved dwarfins from vertebrates, indicating that these components are not idiosyncratic to invertebrates. These analyses suggest that dwarfins are conserved cytoplasmic signal transducers.
Resumo:
gp130 is a ubiquitously expressed signal-transducing receptor component shared by interleukin 6, interleukin 11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1. To investigate physiological roles of gp130 and to examine pathological consequences of a lack of gp130, mice deficient for gp130 have been prepared. Embryos homozygous for the gp130 mutation progressively die between 12.5 days postcoitum and term. On 16.5 days postcoitum and later, they show hypoplastic ventricular myocardium without septal and trabecular defect. The subcellular ultrastructures in gp130-/- cardiomyocytes appear normal. The mutant embryos have greatly reduced numbers of pluripotential and committed hematopoietic progenitors in the liver and differentiated lineages such as T cells in the thymus. Some gp130-/- embryos show anemia due to impaired development of erythroid lineage cells. These results indicate that gp130 plays a crucial role in myocardial development and hematopoiesis during embryogenesis.
Resumo:
cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.
Resumo:
Nramp (natural resistance-associated macrophage protein) is a newly identified family of integral membrane proteins whose biochemical function is unknown. We report on the identification of Nramp homologs from the fly Drosophila melanogaster, the plant Oryza sativa, and the yeast Saccharomyces cerevisiae. Optimal alignment of protein sequences required insertion of very few gaps and revealed remarkable sequence identity of 28% (yeast), 40% (plant), and 55% (fly) with the mammalian proteins (46%, 58%, and 73% similarity), as well as a common predicted transmembrane topology. This family is defined by a highly conserved hydrophobic core encoding 10 transmembrane segments. Other features of this hydrophobic core include several invariant charged residues, helical periodicity of sequence conservation suggesting conserved and nonconserved faces for several transmembrane helices, a consensus transport signature on the intracytoplasmic face of the membrane, and structural determinants previously described in ion channels. These characteristics suggest that the Nramp polypeptides form part of a group of transporters or channels that act on as yet unidentified substrates.
Resumo:
The myc gene family encodes a group of transcription factors that regulate cell proliferation and differentiation. These genes are widely studied because of their importance as proto-oncogenes. Phylogenetic analyses are described here for 45 Myc protein sequences representing c-, N-, L-, S-, and B-myc genes. A gene duplication early in vertebrate evolution produced the c-myc lineage and another lineage that later gave rise to the N- and L-myc lineages by another gene duplication. Evolutionary divergence in the myc gene family corresponds closely to the known branching order of the major vertebrate groups. The patterns of sequence evolution are described for five separate highly conserved regions, and these analyses show that differential rates of sequence divergence (= mosaic evolution) have occurred among conserved motifs. Further, the closely related dimerization partner protein Max exhibits significantly less sequence variability than Myc. It is suggested that the reduced variability in max stems from natural selection acting to preserve dimerization capability with products of myc and related genes.
Resumo:
Expansins are unusual proteins discovered by virtue of their ability to mediate cell wall extension in plants. We identified cDNA clones for two cucumber expansins on the basis of peptide sequences of proteins purified from cucumber hypocotyls. The expansin cDNAs encode related proteins with signal peptides predicted to direct protein secretion to the cell wall. Northern blot analysis showed moderate transcript abundance in the growing region of the hypocotyl and no detectable transcripts in the nongrowing region. Rice and Arabidopsis expansin cDNAs were identified from collections of anonymous cDNAs (expressed sequence tags). Sequence comparisons indicate at least four distinct expansin cDNAs in rice and at least six in Arabidopsis. Expansins are highly conserved in size and sequence (60-87% amino acid sequence identity and 75-95% similarity between any pairwise comparison), and phylogenetic trees indicate that this multigene family formed before the evolutionary divergence of monocotyledons and dicotyledons. Sequence and motif analyses show no similarities to known functional domains that might account for expansin action on wall extension. A series of highly conserved tryptophans may function in expansin binding to cellulose or other glycans. The high conservation of this multigene family indicates that the mechanism by which expansins promote wall extensin tolerates little variation in protein structure.
Resumo:
Three plant sulfate transporter cDNAs have been isolated by complementation of a yeast mutant with a cDNA library derived from the tropical forage legume Stylosanthes hamata. Two of these cDNAs, shst1 and shst2, encode high-affinity H+/sulfate cotransporters that mediate the uptake of sulfate by plant roots from low concentrations of sulfate in the soil solution. The third, shst3, represents a different subtype encoding a lower affinity H+/sulfate cotransporter, which may be involved in the internal transport of sulfate between cellular or subcellular compartments within the plant. The steady-state level of mRNA corresponding to both subtypes is subject to regulation by signals that ultimately respond to the external sulfate supply. These cDNAs represent the identification of plant members of a family of related sulfate transporter proteins whose sequences exhibit significant amino acid conservation in filamentous fungi, yeast, plants, and mammals.
Resumo:
The guinea pig estrogen sulfotransferase gene has been cloned and compared to three other cloned steroid and phenol sulfotransferase genes (human estrogen sulfotransferase, human phenol sulfotransferase, and guinea pig 3 alpha-hydroxysteroid sulfotransferase). The four sulfotransferase genes demonstrate a common outstanding feature: the splice sites for their 3'-terminal exons are identically located. That is, the 3'-terminal exon splice sites involve a glycine that constitutes the N-terminal glycine of an invariably conserved GXXGXXK motif present in all steroid and phenol sulfotransferases for which primary structures are known. This consistency strongly suggests that all steroid and phenol sulfotransferase genes will be similarly spliced. The GXXGXXK motif forms the active binding site for the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate. Amino acid sequence alignment of 19 cloned steroid and phenol sulfotransferases starting with the GXXGXXK motif indicates that the 3'-terminal exon for each steroid and phenol sulfotransferase gene encodes a similarly sized C-terminal fragment of the protein. Interestingly, on further analysis of the alignment, three distinct amino acid sequence patterns emerge. The presence of the conserved functional GXXGXXK motif suggests that the protein domains encoded by steroid and phenol sulfotransferase 3'-terminal exons have evolved from a common ancestor. Furthermore, it is hypothesized that during the course of evolution, the 3'-terminal exon further diverged into at least three sulfotransferase subdivisions: a phenol or aryl group, an estrogen or phenolic steroid group, and a neutral steroid group.
Resumo:
We have isolated a major integral membrane protein from Golgi-derived coatomer-coated vesicles. This 24-kDa protein, p24, defines a family of integral membrane proteins with homologs present in yeast and humans. In addition to sequence similarity, all p24 family members contain a motif with the characteristic heptad repeats found in coiled coils. When the yeast p24 isoform, yp24A, is knocked out in a strain defective for vesicle fusion, a dramatic reduction in the accumulation of transport vesicles is observed. Together, these results indicate a role for this protein family in the budding of coatamer-coated and other species of coated vesicles.
Resumo:
Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.
Resumo:
Ran, a small nuclear GTP binding protein, is essential for the translocation of nuclear proteins through the nuclear pore complex. We show that several proteins, including the Saccharomyces cerevisiae Nup2p and Caenorhabditis elegans F59A2.1 nucleoporins, contain domains similar to the previously characterized murine Ran binding protein (RBP, termed RBP1). To test the significance of this similarity, we have used the corresponding domains of Nup2p and a putative S. cerevisiae RBP in Ran binding assays and the yeast two-hybrid system. Both proteins bind S. cerevisiae Ran, but only the putative S. cerevisiae RBP binds human Ran. Two-hybrid analysis revealed Ran-Ran interactions and that yeast and human Rans can interact. These data identify Nup2p as a target for Ran in the nuclear pore complex, suggesting a direct role for it in nuclear-cytoplasmic transport. We discuss the possibility that proteins harboring Ran binding domains link the Ran GTPase cycle to specific functions in the nucleus.
Resumo:
Mycobacterium tuberculosis, the primary agent of tuberculosis, must acquire iron from the host to cause infection. To do so, it releases high-affinity iron-binding siderophores called exochelins. Exochelins are thought to transfer iron to another type of high-affinity iron-binding molecule in the bacterial cell wall, mycobactins, for subsequent utilization by the bacterium. In this paper, we describe the purification of exochelins of M. tuberculosis and their characterization by mass spectrometry. Exochelins comprise a family of molecules whose most abundant species range in mass from 744 to 800 Da in the neutral Fe(3+)-loaded state. The molecules form two 14-Da-increment series, one saturated and the other unsaturated, with the increments reflecting different numbers of CH2 groups on a side chain. These series further subdivide into serine- or threonine-containing species. The virulent M. tuberculosis Erdman strain and the avirulent M. tuberculosis H37Ra strain produce a similar set of exochelins. Based on a comparison of their tandem mass spectra, exochelins share a common core structure with mycobactins. However, exochelins are smaller than mycobactins due to a shorter alkyl side chain, and the side chain of exochelins terminates in a methyl ester. These differences render exochelins more polar than the lipophilic mycobactins and hence soluble in the aqueous extracellular milieu of the bacterium in which they bind iron in the host.