934 resultados para Electronic Tendering, Secure E-Commerce
Resumo:
Este documento de trabalho visa apresentar o conceito de electronic book e discutir questões relacionadas com este novo género de publicação e sua aceitação pelo mercado, as vantagens, alguns desafios e principais dificuldades enfrentadas pelos produtores. Com o desenvolvimento das novas tecnologias, emergem novas expectativas em relação às potencialidades do ambiente digital ao que se verifica no meio impresso: custos reduzidos, facilitando a replicação de cópias e a quase livre e imediata distribuição de cópias no mundo inteiro através da Internet.
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em História Moderna e dos Descobrimentos
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
NSBE - UNL
Resumo:
This study analyses the access and use of financial services by small business owners in the cities of Mozambique, as an important tool for boosting economic growth and diminishing inequality. It correlates owners’ and business characteristics with the probability of adopting Points-of-Sale (POS), Mobile Banking and Mobile Money in everyday transactions. The main findings highlight that what mostly affects the use of POS is the size of business and the volume of transactions (positively correlated with POS adoption), while using mobile phone technologies for payments predominantly depends on the owner’s age and whether he/she is a frequent cellphone user. Moreover, to increase the use of electronic means of payment it is necessary to increase financial literacy and improve the banking services.
Resumo:
In the fields of marketing and general management, many are the contributions of literature relating trust and e‐commerce. Trust is perceived as an issue that concerns the consumers’ intention to purchase. As so, in this research, a path model is empirically tested in order to develop solutions for Internet vendors on how to deal with consumers and increase their trust. The path model measures how the dimensions of trust, named as competence, integrity and benevolence positively influence the overall trust of the consumers and at the same time how the sources of trust – consumer characteristics, firm characteristics, website infrastructure and interactions influence those dimensions. The data used to test the model was collected in Portugal, through 365 valid cases. Findings revealed that consumers, which have high level of overall trust, are more likely to intent to purchase online.
Resumo:
This report aims to analyse the Definition, Implementation and Management of Vodafone Portugal’s Apps and Services, so that possible ways of improvement can be suggested. To do so, Vodafone’s strategy regarding the development/ implementation of specific Apps and Services, as well as the strategy of its competitors are going to be analysed. This analysis is going to be complemented with insights from some key-persons of Vodafone’s Consumer Business Unit team in Portugal. Findings suggest that Vodafone is ahead of its competitors when it comes to developing the most innovative Apps and Services, but there is always room for improvements, especially when it comes to communication.
Resumo:
This case-study examined the use of the BeGloCal Framework applied to B2C E-commerce, for a fast moving consumer goods European manufacturing firm. It explains how the framework supported the team within the company to identify the right local market as to where to start the project, the problem for the company was to find the most appealing area to invest resources. By going through all the steps of the framework the findings led the company to London (Kensington and Chelsea). It shows how managers should act when they have to find a trade-off between standardization and adaptation.
Resumo:
Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
We investigate the low-energy electronic transport across grain boundaries in graphene ribbons and infinite flakes. Using the recursive Green’s function method, we calculate the electronic transmission across different types of grain boundaries in graphene ribbons. We show results for the charge density distribution and the current flow along the ribbon. We study linear defects at various angles with the ribbon direction, as well as overlaps of two monolayer ribbon domains forming a bilayer region. For a class of extended defect lines with periodicity 3, an analytic approach is developed to study transport in infinite flakes. This class of extended grain boundaries is particularly interesting, since the K and K0 Dirac points are superposed.
Resumo:
Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.