960 resultados para Electromechanical Heart Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype × age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. Results We found evidence for genotype × age interaction for fasting glucose and systolic blood pressure. Conclusions There is polygenic genotype × age interaction for fasting glucose and systolic blood pressure and quantitative trait locus × age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to evaluate the antimicrobial activity of calcium hydroxide, 2% chlorhexidine gel, and triantibiotic paste (ie, metronidazole, minocycline, and ciprofloxacin) by using an intraorally infected dentin biofilm model. Methods: Forty bovine dentin specimens were infected intraorally using a removable orthodontic device in order to induce the biofilm colonization of the dentin. Then, the samples were treated with the medications for 7 days. Saline solution was used as the control. Two evaluations were performed: immediately after the elimination of the medication and after incubation in brain-heart infusion medium for 24 hours. The Live/Dead technique (Invitrogen, Eugene, OR) and a confocal microscope were used to obtain the percentage of live cells. Nonparametric statistical tests were performed to show differences in the percentage of live cells among the groups (P < .05). Results: Calcium hydroxide and 2% chlorhexidine gel did not show statistical differences in the immediate evaluation. However, after application of the brain-heart infusion medium for 24 hours, 2% gel chlorhexidine showed a statistically lesser percentage of live cells in comparison with calcium hydroxide. The triantibiotic paste significantly showed a lower percentage of live cells in comparison with the 2% chlorhexidine gel and calcium hydroxide groups in the immediate and secondary (after 24 hours) evaluations. Conclusions: The triantibiotic paste was most effective at killing the bacteria in the biofilms on the intraorally infected dentin model in comparison with 2% chlorhexidine gel and calcium hydroxide

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the feasibility of a new application able to check the heart failure status in a patient through the estimation of the venous distension. In this way it would be possible to follow up patients, avoiding invasive or expensive exams such as cardiac catheterization and echocardiography. Moreover, the devices would also be able to diagnose the decline of the disease, in order to allow a new adaptation to therapy, and vice versa to check the improvement in the patient’s conditions after the CRT device implant. This thesis is essentially divided into three parts: an analytical model was used to obtain an estimation of the error committed for the calculation of the CSA and to understand how the accuracy and sensitivity depend on the different configurations of the electrodes and the catheter position inside the vein; secondly, an in-vitro experiment was carried out in order to verify the practical feasibility for these kinds of measurements, in a very simplified model; in the end, several animal experiments were done to test the in-vivo practicability of the proposed method. The obtained results showed the feasibility of this approach. In fact, the error committed in the estimation of CSA, during the animal experiments, can be considered acceptable (CSAerror_max ≈ -14%). Moreover, it has been demonstrated that the conductance catheter allows assessing, not only the vein CSA, but also the breathing of the animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical action of the heart is made possible in response to electrical events that involve the cardiac cells, a property that classifies the heart tissue between the excitable tissues. At the cellular level, the electrical event is the signal that triggers the mechanical contraction, inducing a transient increase in intracellular calcium which, in turn, carries the message of contraction to the contractile proteins of the cell. The primary goal of my project was to implement in CUDA (Compute Unified Device Architecture, an hardware architecture for parallel processing created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate the heterogeneity of its structure and how that variability influences the behavior of the cells. In particular, each cell has an intrinsic discharge frequency, thus different from that of every other cell of the tissue and it is interesting to study the process of synchronization of the cells and look at the value of the last discharge frequency if they synchronized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Intracisternal blood injection is the most common applied experimental subarachnoid bleeding technique in rabbits. The model comprises examiner-dependent variables and does not closely represent the human pathophysiological sequelae of ruptured cerebral aneurysm. The degree of achieved delayed cerebral vasospasm (DCVS) in this model is often mild. The aim of this study was to characterize and evaluate the feasibility of a clinically more relevant experimental SAH in vivo model. SAH was performed by arterial blood shunting from the subclavian artery into the great cerebral cistern. A total of five experiments were performed. Intracranial pressure (ICP), arterial blood pressure, heart rate, arterial blood gas analysis, and neurological status were monitored throughout the experiments. SAH induced vasoconstriction of the basilar artery was 52.1±3.4% on day 3 compared to baseline (P<0.05). Post-mortem gross examination of the brain showed massive blood clot accumulation around the brainstem and ventral surface of the brain. The novel technique offers an examiner independent SAH induction and triggers high degrees of delayed cerebral vasospasm. The severity of vasospasm attained offers a unique opportunity to evaluate future therapeutic treatment options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement (SAVR) for patients with symptomatic severe aortic stenosis (AS) and a high operative risk. Risk stratification plays a decisive role in the optimal selection of therapeutic strategies for AS patients. The accuracy of contemporary surgical risk algorithms for AS patients has spurred considerable debate especially in the higher risk patient population. Future trials will explore TAVI in patients at intermediate operative risk. During the design of the SURgical replacement and Transcatheter Aortic Valve Implantation (SURTAVI) trial, a novel concept of risk stratification was proposed based upon age in combination with a fixed number of predefined risk factors, which are relatively prevalent, easy to capture and with a reasonable impact on operative mortality. Retrospective application of this algorithm to a contemporary academic practice dealing with clinically significant AS patients allocates about one-fourth of these patients as being at intermediate operative risk. Further testing is required for validation of this new paradigm in risk stratification. Finally, the Heart Team, consisting of at least an interventional cardiologist and cardiothoracic surgeon, should have the decisive role in determining whether a patient could be treated with TAVI or SAVR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 μW) and in vivo (16.7 μW)-is sufficient to power modern pacemakers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitamin D(3) and nicotine (VDN) model is one of isolated systolic hypertension (ISH) in which arterial calcification raises arterial stiffness and vascular impedance. The effects of VDN treatment on arterial and cardiac hemodynamics have been investigated; however, a complete analysis of ventricular-arterial interaction is lacking. Wistar rats were treated with VDN (VDN group, n = 9), and a control group (n = 10) was included without the VDN. At week 8, invasive indexes of cardiac function were obtained using a conductance catheter. Simultaneously, aortic pressure and flow were measured to derive vascular impedance and characterize ventricular-vascular interaction. VDN caused significant increases in systolic (138 +/- 6 vs. 116 +/- 13 mmHg, P < 0.01) and pulse (42 +/- 10 vs. 26 +/- 4 mmHg, P < 0.01) pressures with respect to control. Total arterial compliance decreased (0.12 +/- 0.08 vs. 0.21 +/- 0.04 ml/mmHg in control, P < 0.05), and pulse wave velocity increased significantly (8.8 +/- 2.5 vs. 5.1 +/- 2.0 m/s in control, P < 0.05). The arterial elastance and end-systolic elastance rose significantly in the VDN group (P < 0.05). Wave reflection was augmented in the VDN group, as reflected by the increase in the wave reflection coefficient (0.63 +/- 0.06 vs. 0.52 +/- 0.05 in control, P < 0.05) and the amplitude of the reflected pressure wave (13.3 +/- 3.1 vs. 8.4 +/- 1.0 mmHg in control, P < 0.05). We studied ventricular-arterial coupling in a VDN-induced rat model of reduced arterial compliance. The VDN treatment led to development of ISH and provoked alterations in cardiac function, arterial impedance, arterial function, and ventricular-arterial interaction, which in many aspects are similar to effects of an aged and stiffened arterial tree.