957 resultados para Electromagnetic Transients
Electromagnetic-like Mechanism with force decay rate great deluge for the Course Timetabling Problem
Resumo:
Small salient-pole machines, in the range 30 kVA to 2 MVA, are often used in distributed generators, which in turn are likely to form the major constituent of power generation in power system islanding schemes or microgrids. In addition to power system faults, such as short-circuits, islanding contains an inherent risk of out-of-synchronism re-closure onto the main power system. To understand more fully the effect of these phenomena on a small salient-pole alternator, the armature and field currents from tests conducted on a 31.5 kVA machine are analysed. This study demonstrates that by resolving the voltage difference between the machine terminals and bus into direct and quadrature axis components, interesting properties of the transient currents are revealed. The presence of saliency and short time-constants cause intriguing differences between machine events such as out-of-phase synchronisations and sudden three-phase short-circuits.
Resumo:
The compression of a finite extent Gaussian laser pulse in collisional plasma is investigated. An analytical model is employed to describe the spatiotemporal evolution of a laser pulse propagating through the plasma medium. The pulse geometry is modeled via an appropriate ansatz which takes into account both beam radius (in space) and pulse width (in time). Compression and self-focusing are taken into account via appropriated group velocity dispersion and nonlinearity terms. The competition among the collisional nonlinearity in the plasma and the effect of divergence due to diffraction is pointed out and investigated numerically. Our results suggest that laser pulse compression and intensity localization is enhanced by plasma collisionality. In specific, a pulse width compression by an order of magnitude approximately is observed, for typical collisional laser plasma parameters, along with a significant increase in the intensity.
Resumo:
The propagation of a Gaussian electromagnetic beam along the direction of magnetic field in a plasma is investigated. The extraordinary (E-x+iE(y)) mode is explicitly considered in the analysis, although the results for the ordinary mode can be obtained upon replacing the electron cyclotron frequency omega(c) by -omega(c). The propagating beam electric field is coupled to the surrounding plasma via the dielectric tensor, taking into account the existence of a stationary magnetic field. Both collisionless and collisional cases are considered, separately. Adopting an established methodological framework for beam propagation in unmagnetized plasmas, we extend to magnetized plasmas by considering the beam profile for points below the critical curve in the beam-power versus beam-width plane, and by employing a relationship among electron concentration and electron temperature, provided by kinetic theory (rather than phenomenology). It is shown that, for points lying above the critical curve in the beam-power versus beam-width plane, the beam experiences oscillatory convergence (self-focusing), while for points between the critical curve and divider curve, the beam undergoes oscillatory divergence and for points on and below the divider curve the beam suffers a steady divergence. For typical values of parameters, numerical results are presented and discussed. (C) 2008 American Institute of Physics.
Resumo:
By engineering the internal structure of artificial materials it is possible to reproduce effective electromagnetic properties, including some which were previously unavailable in nature. Since the first experimental demonstration of artificial composites with exotic electromagnetic properties at microwaves less than 10 years ago, metamaterials has emerged as a rapidly growing multidisciplinary branch of science and engineering. Significant efforts have been placed in scaling the response of metamaterials to optical frequencies as well as demonstrate pertinent applications of the newly available technology. In this article we review recent developments in the area of experimental realisation of electromagnetic metamaterials and their applications.
Resumo:
We simulate the localized surface plasmon resonances of an Au nanoparticle within tunnelling proximity of an Au substrate. The results demonstrate that the calculated resonance energies can be identified with those experimentally detected for light emission from the tip-sample junction of a scanning tunnelling microscope. Relative to the modes of an isolated nanoparticle these modes show significant red-shifting, extending further into the infrared with increasing radius, primarily due to a proximity-induced lowering of the effective bulk plasmon frequency. Spatial mapping of the field enhancement factor shows an oscillatory variation of the field, absent in the case of a dielectric substrate; also the degree of localization of the modes, and thus the resolution achievable electromagnetically, is shown to depend primarily on the nanoparticle radius, which is only weakly dependent on wavelength.