968 resultados para EXTINCTION CHRONOLOGY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconstruct the timing of ice flow reconfiguration and deglaciation of the Central Alpine Gotthard Pass, Switzerland, using cosmogenic 10Be and in situ14C surface exposure dating. Combined with mapping of glacial erosional markers, exposure ages of bedrock surfaces reveal progressive glacier downwasting from the maximum LGM ice volume and a gradual reorganization of the paleoflow pattern with a southward migration of the ice divide. Exposure ages of ∼16–14 ka (snow corrected) give evidence for continuous early Lateglacial ice cover and indicate that the first deglaciation was contemporaneous with the decay of the large Gschnitz glacier system. In agreement with published ages from other Alpine passes, these data support the concept of large transection glaciers that persisted in the high Alps after the breakdown of the LGM ice masses in the foreland and possibly decayed as late as the onset of the Bølling warming. A younger group of ages around ∼12–13 ka records the timing of deglaciation following local glacier readvance during the Egesen stadial. Glacial erosional features and the distribution of exposure ages consistently imply that Egesen glaciers were of comparatively small volume and were following a topographically controlled paleoflow pattern. Dating of a boulder close to the pass elevation gives a minimum age of 11.1 ± 0.4 ka for final deglaciation by the end of the Younger Dryas. In situ14C data are overall in good agreement with the 10Be ages and confirm continuous exposure throughout the Holocene. However, in situ14C demonstrates that partial surface shielding, e.g. by snow, has to be incorporated in the exposure age calculations and the model of deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An obstacle for establishing the chronology of iron meteorite formation using 182Hf-182W systematics (t1/2 = 8.9 Myr) is to find proper neutron fluence monitors to correct for cosmic ray modification of W isotopic composition. Recent studies showed that siderophile elements such as Pt and Os could serve such a purpose. To test and calibrate these neutron dosimeters, the isotopic compositions of W and Os were measured in a slab of the IID iron meteorite Carbo. This slab has a well-characterized noble gas depth profile reflecting different degrees of shielding to cosmic rays. The results show that W and Os isotopic ratios correlate with distance from the pre-atmospheric center. Negative correlations, barely resolved within error, were found between epsilo190Os-epsilo189Os and epsilo186Os-epsilo189Os with slopes of -0.64 ± 0.45 and -1.8(+1.9/-2.1), respectively. These Os isotope correlations broadly agree with model predictions for capture of secondary neutrons produced by cosmic ray irradiation and results reported previously for other groups of iron meteorites. Correlations were also found between epsilo182W-epsilo189Os (slope = 1.02 ± 0.37) and epsilo182W-epsilo190Os (slope = -1.38 ± 0.58). Intercepts of these two correlations yield pre-exposure epsilo182W values of -3.32 ± 0.51 and -3.62 ± 0.23, respectively (weighted average epsilo182W = -3.57 ± 0.21). This value relies on a large extrapolation leading to a large uncertainty but gives a metal-silicate segregation age of -0.5 ± 2.4 Myr after formation of the solar system. Combining the iron meteorite measurements with simulations of cosmogenic effects in iron meteorites, equations are presented to calculate and correct for cosmogenic effects on 182W using Os isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two planktonic foraminiferal oxygen isotope records of ODP Hole 653A (Tyrrhenian Sea) are presented for the time period extending from approximately 0.8 to 3.0 Ma. Six, generally accepted, synchronous bioevents were used to precise the oxygen isotope chronology and to identify the oxygen isotope stages 22 down to 114. Subsequently, this oxygen isotope chronology was used to determine the synchronism or diachronism of various other biostratigraphic events with those recorded in the Singa and Ficarazzi land sections (Italy) and those in other DSDP/ODP sites. New results concern the diachronity of the FOD of the planktonic foraminiferal species N. atlantica, G.truncatulinoides truncatulinoides and G. inflata between ODP Hole 653A and the Italian landsections. Because many species entered the Mediterranean in short term fluxes, strongly related to the southward migration of cool North Atlantic surface waters, their time distribution through the Pliocene-Pleistocene generally corresponds to alternated intervals of presence and absence. This should explain most of the apparently diachronous appearances and disappearances. Alternating presence-absence patterns are of less importance for the various nannofossil events. The LOD of D. surculus occurs during the transition of stage 100 to 101 in both ODP Hole 653A and the Singa section, which is in perfect agreement with the disappearance of this species from the open ocean. The LOD of D. pentaradiatus in the Mediterranean occurs in stages 100-99, which seems to be consistent with the extinction of this species in the southern Hemisphere. G. oceanica, which corresponds to the 4 µm < Gephyrocapsa spp <5.5 µm is recorded in stages 65 to 64 at ODP Hole 653A. The Gephyrocapsa spp. >5.5 µm first occurred in stage 51 at Hole 653A, which fits within the uncertainty interval for this event stretching from stage 51 to 47 in the open ocean and seems therefore a useful tool for conventional biostratigraphy in the Mediterranean.

Relevância:

20.00% 20.00%

Publicador: