995 resultados para EPITAXIAL-GROWTH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of both compressive and tensile epitaxial strain along with the electrical boundary conditions on the ferroelastic and ferroelectric domain patterns of bismuth ferrite films was studied. BiFeO3 films were grown on SrTiO3(001), DyScO3(110), GdScO3(110), and SmScO3(110) substrates to investigate the effect of room temperature in-plane strain ranging from -1.4% to +0.75%. Piezoresponse force microscopy, transmission electron microscopy, x-ray diffraction measurements, and ferroelectric polarization measurements were performed to study the properties of the films. We show that BiFeO3 films with and without SrRuO3 bottom electrode have different growth mechanisms and that in both cases reduction of the domain variants is possible. Without SrRuO3, stripe domains with reduced variants are formed on all rare earth scandate substrates because of their monoclinic symmetry. In addition, tensile strained films exhibit a rotation of the unit cell with increasing film thickness. On the other side, the presence of SrRuO3 promotes step flow growth of BiFeO3. In case of vicinal SrTiO3 and DyScO3 substrates with high quality SrRuO3 bottom electrode and a low miscut angle of approximate to 0.15 degrees we observed suppression of the formation of certain domain variants. The quite large in-plane misfit of SrRuO3 with GdScO3 and SmScO3 prevents the growth of high quality SrRuO3 films and subsequent domain variants reduction in BiFeO3 on these substrates, when SrRuO3 is used as a bottom electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (001), (116), and (103) orientations have been grown by pulsed laser deposition on (001)-, (011)-, and (111)-oriented Nb-doped SrTiO3 substrates. X-ray diffraction pole figure and phi -scan measurements revealed that the three-dimensional epitaxial orientation relation SBT(001)parallel to SrTiO3(001), and SBT[1(1) over bar 0]parallel to SrTiO3[100] is valid for all cases of SET thin films on SrTiO3 substrates, irrespective of their orientations. Atomic force microscopy images of the c-axis-oriented SET revealed polyhedron-shaped grains showing spiral growth around screw dislocations. The terrace steps of the c-axis-oriented SET films were integral multiples of a quarter of the lattice parameter c of SBT (similar to 0.6 nm). The grains of (103)-oriented SET films were arranged in a triple-domain configuration consistent with the symmetry of the SrTiO3(111) substrate. The measured remanent polarization (2P(r)) and coercive field (2E(c)) of (116)-oriented SBT films were 9.6 muC/cm(2) and 168 kV/cm, respectively, for a maximum applied electric field of 320 kV/cm. Higher remanent polarization (2P(r)=10.4 muC/cm(2)) and lower coercive field (2E(c)=104 kV/cm) than those of SBT(116) films were observed in (103)-oriented SET thin films, and (001)-oriented SET revealed no ferroelectricity along the [001] axis. The dielectric constants of (001)-, (116)-, and (103)-oriented SBT were 133, 155, and 189, respectively. (C) 2000 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of epitaxial BaTiO3/SrTiO3 multilayers; is studied in terms of the growth mechanism by investigating surface morphologies, crystalline orientations, microstructures, and structures of the interfaces, as well as by determining the dielectric properties. Under specific conditions, the epitaxial BaTiO3 films follow a layer-then-island (Stranski-Krastanov) mechanism on SrTiO3 (001)-oriented substrates. In view of actual efforts made to grow epitaxial superlattices involving very thin individual layers of BaTiO3 and/or SrTiO3, we have determined that the BaTiO3 films Of up to 6,nm thickness do not show any defects and have a sharp BaTiO3-on-SrTiO3 interface. On the contrary, SrTiO3-on-BaTiO3 interfaces within multilayers are rough, probably due to the different growth mechanisms of the two different materials, or due to a difference in the morphological stability of the growth surfaces caused by different surface energies of BaTiO3 and SrTiO3 and by different mobilities of the Ba and Sr atoms reaching the SrTi3 and BaTiO3 layers, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where  with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.